Overview

* Multiprocessor OS (Background and Review)
- How does it work? (Background)
- Scalability (Review)

* Multiprocessor Hardware
- Contemporary systems (Intel, AMD, ARM, Oracle/Sun)
- Experimental and Future systems (Intel, MS, Polaris)

* OS Design for Multiprocessors

- Guidelines

- Design approaches
* Divide and Conquer (Disco, Tesselation)
* Reduce Sharing (K42, Corey, Linux, FlexSC, scalable commutativity)
* No Sharing (Barrelfish, fos)

e
DATA
b1

~N 7~

3 | COMP92425S2/2018 W11

Uniprocessor OS

CPU

/

/

/ OS data

v

5| COMP92425S2/2018 W11

Run Process control FS
queue blocks structs
Memory

Multiprocessor OS

CPU

-

CPU

CPU

Appd

/-
/ ‘

\ \ N
OS data Appllcatlon ta
Appd
Run Process control FS
queue blocks structs w w

6 | COMP9242

S2/2018 W11

Memory

@

e
DATA
b1

~N 7~

Multiprocessor OS

CPU

-

o

N 4

CPU

-

Key design challenges:
Correctness of (shared) data structures
Scalability (performance doesn’t suffer)

_/

7

OS data Application data
Appd
Run Process control FS
queue blocks structs
Memory

COMP9242 S2/2018 W11

@

e
DATA
b1

~N 7~

Correctness of Shared Data

* Concurrency control
- Locks

Semaphores
Transactions
Lock-free data structures

* We know how to do this:

- In the application
- Inthe OS

e
DATA

8 | COMP924252/2018 W11 N7

Scalability

Speedup as more processors added

Ideal

sovy =L
TN

T T T T

number of processors (n)

~
DATA
b1

~N 7~

9 | (COMP9242S2/2018 W11

Scalability

Speedup as more processors added

Reality

sovy =L
TN

T T T T

number of processors

~
DATA I
b1

10 | COMP9242 S2/2018 W11 N7

Scalability and Serialisation

Parallel
Parallel

Parallel
Parallel

Processor 1 Processor 2 Processor 3
Parallel
ETEIE Parallel Parallel
Program Parallel Parallel Parallel

Parallel
Parallel

Parallel

Parallel
Parallel Serial

EIEUE
Serial
Parallel
Parallel

Parallel

Parallel Parallel
Parallel

Parallel Parallel

11 | COMP9242 S2/2018 W11

g
N

Scalability and Serialisation

Remember Amdahl’s law
- Serial (non-parallel) portion: when application not running on all cores

- Serialisation prevents scalability

Amdanl's Law 71=1=(—P)+ P

20.00 7

18.00 ()/«P”*"Jilf T =(1_P)+£

iseo r 8l —= I N)

—T 5%
t4.00 i 7—1 1
- 4 — SNy =2 = P
§ / N A-P))+ —
10.00 s —1 1 v
/ =

8.00 / !

- ; S~

o C T 1

200 =

M I - B - I 8 = & N §

Number of Frocewmors % I E_’IATA
12 | COMP9242 52/2018 W1l N7

Serialisation

Where does serialisation show up?
- Application (e.g. access shared app data)
- OS (e.g. performing syscall for app) How much time is spent in OS?

Sources of Serialisation

Locking (explicit serialisation)
* Waiting for a lock = stalls self
* Lock implementation:
* Atomic operations lock bus = stalls everyone waiting for memory
* Cache coherence traffic loads bus = stalls others waiting for memory

Memory access (implicit)
- Relatively high latency to memory =» stalls self
Cache (implicit)
- Processor stalled while cache line is fetched or invalidated

- Affected by latency of interconnect
- Performance depends on data size (cache lines) and contention (number of cores)

DATA

13 | COMP9242 $2/2018 W11 % ~N 7

e
b1

More Cache-related Serialisation

False sharing
- Unrelated data structs share the same cache line

- Accessed from different processors
=» Cache coherence traffic and delay

Cache line bouncing
- Shared R/W on many processors
- E.g: bouncing due to locks: each processor spinning on a lock brings it into its own cache

=» Cache coherence traffic and delay

Cache misses
- Potentially direct memory access = stalls self

- When does cache miss occur?
* Application accesses data for the first time, Application runs on new core
* Cached memory has been evicted
* Cache footprint too big, another app ran, OS ran

DATA

14 | COMP9242 S2/2018 W11 g ~N 7

e
b1

Multi-What?

* Terminology:
- core, die (chip), package (module, processor, CPU)

* Multiprocessor, SMP
- >1 separate processors, connected by off-processor interconnect

* Multithread, SMT
- >1 hardware threads in a single processing core

* Multicore, CMP
- >1 processing cores in a single die, connected by on-die interconnect

* Multicore + Multiprocessor
- >1 multicore dies in a package (multi-chip module), on-processor interconnect
- >1 multicore processors, off-processor interconnect

* Manycore
- Lots (>100) of cores

DATA

16 | COMP9242 $2/2018 W11 % ~N 7

e
b1

Interesting Properties of Multiprocessors

* Scale and Structure
- How many cores and processors are there
- What kinds of cores and processors are there
- How are they organised (access to 10, etc.)

* Interconnect
- How are the cores and processors connected

* Memory Locality and Caches
- Where is the memory
- What is the cache architecture

* Interprocessor Communication
- How do cores and processors send messages to each other

e
DATA

17 | COMP9242 52/2018 W11 N7

Contemporary Multiprocessor Hardware

* Intel:
- Nehalem, Westmere: 10 core, QPI
- Sandy Bridge, Ivy Bridge: 5 core, ring bus, integrated GPU, L3, 10
- Haswell (Broadwell): 18+ core, ring bus, transactional memory, slices (EP)
- Skylake (SP): mesh architecture

* AMD:
- K10 (Opteron: Barcelona, Magny Cours): 12 core, Hypertransport
- Bulldozer, Piledriver, Steamroller (Opteron, FX)
* 16 core, Clustered Multithread: module with 2 integer cores
- Zen: on die NUMA: CPU Complex (CCX) (4 core, private L3)

* Oracle (Sun) UltraSparc T1,7T2,T3,T4,T5 (Niagara), M5,M7

- T5:16 cores, 8 threads/core (2 simultaneous), crossbar, 8 sockets,
- MS8: 32 core, 8 threads, on chip network, 8 sockets, 5GHz

* ARM Cortex A9, A15 MPCore, big.LITTLE, DynamIQ
- 4 -8 cores, big.LITTLE: A7 + A15, dynamIQ: A75 + A55

e
DATA

18 | COMP9242 52/2018 W11 N7

Scale and Structure

o W N E N NN BN

* ARM Cortex A9

DEEEEREEMmEHE

Cortex -A9 MPCore

E N NN EE

DATA

~”~
Cm. N R R B E E B B R %lm
-

i

Scale and Structure

* ARM big.LITTLE

‘GIC-400

Interrupts

Memory Controller System Port

Ports

~

I DATA
b1

~N 7~

20 | COMP9242 S2/2018 W11

Scale and Structure

Conventional DynamlQ
big.LITTLE big.LITTLE

Cortex-AS53
DATA

\/

21 | COMP9242S2/2018 W11

Scale and Structure

* Intel Nehalem

GESEETY = < 0wl Sots
T — 4 e eaSion

‘.)) '.;

noet™ 7500
Chipsst

BEEEEEHH

~
@
~N 7~

22 | COMP9242S2/2018 W11

Memory Locality and Caches

* NUMA (Non-Uniform Memory Access)

HE B0 BEEE

oA M Sored L Lo

ETELET e 40905 S0y
w— 2 NN S0t

GELL]EEEE

? o L lx

net™ 7500
Chipsst

23 | COMP9242 S2/2018 W11 % ~N 7

RS — e Son
. — G O S0ns
e = 4 DS SO0

TAME Dot 1 e
- -~ -~ o :
- - 8 <
HEEEER

~
DATA I
b1

Interconnect

* AMD Barcelona

sata <

e Cmm
SATA _
pcle <
coe

» - RAm |

Floppy disk drive

~

I DATA
b1

~N 7~

24 | COMP9242 S2/2018 W11

Interconnect (Latency)

L1: 2
L2: 15

130

130

130

L3: 75

l

190

25 | COMP9242S2/2018 W11

>

N g

190

l

260

N g

260

332

332

369

e
DATA
b1

~N 7~

Interconnect (Bandwidth)

Node O — — —
Node 6 [— — i «——Node 7
3GB/s 6GB/s mmmssn 4GB/s-3GB/s <—— Unidirectional

% I a I
26 | COMP9242S2/2018 W11

Intercon nECt FB DIMM FB DIMM FB DIMM FB DIMM

¥ ¥ i |
Comeu Mo Mo

* Oracle Sparc T2

Full Cross Bar

FrPU N FrU B FPu PR Fru fN FPU B FPU TR FPU [N FPU
spu 'l spu [l spuU [l spu Tl spU | sPU Bl spU [N sPU

|

NIU Sys I/F
(Ethernet+) Buffer Switch Core
2x 10 Power <95 W x8 @ 2.0 GHz

Gigabit Ethernet

27 | COMP9242 S2/2018 W11

@ [
Oracle\ 7~

Interconnect

Haswell EP Die Configurations

14-78 Core (HCC) 10-72 Core (MCC) 4-8 Core (LCC)

0 1 I B R]
A — .
= .J—-‘
—y3 =T TS Ty - - > = p — Y o — - — =
-3:_ =u;.=.{ v .FJ{- .1.::.. = T =1 = . =4 r
. gy g You = — — —
= == = ot = — c— : : 5 -s = =
t—
3 ;:.E = 1o & = E s — - S o
—~ 4 - - | > - H =T >
Pe = ot T =l .—w: —— -1 P = - g
= - - o b = : = 9 = | - =

e e o == =l -y
VS._-W.‘—:.—P‘ O U el e "lﬁ\} J\-‘—- == 1" & '__—'.-ha ‘\)";“x" — "f‘i__;-;&»

TR P Rt P OF ST By, e B ation i Lavgponats for niematiores Lowe Oty

P ower (W) Transinors 08)

Home Agema

170 1a%

M 3 2 & 12 &5 160 84 S0
Lce Fs ! 4 n 5% 1an 2 6 54
>— ~ - - — —— —

e |
N -

28 | COMP9242 S2/2018 W11

Interconnect/Structure/Memory

Cluster on Die (COD) Mode

COD Mode for 18C ES-2600v3

* Supported on 1S & 2SS SKUs with 2 Home Agents
(10+ cores)

= In memory directory bits & directory cache used on
2S to reduce coherence traffic and cache-to-cache
transfer latencies

= Targeted at NUMA optimized workliocads where
fatency is more important than sharing across
Caching Agents

* Reduces average LLC hit and local memory latencies

* HA sees most requests from reduced set of threads
potentially offenng higher effective memory bandwidth

« OS/ VMM own NUMA and process affinity decisions

DATA I
b1
~N 7~

29 | COMP9242S2/2018 W11

Experimental/Future/Non-mainstream Multiprocessor
Hardware

* Microsoft Beehive
- Ring bus, no cache coherence

* Tilera (now Mellanox) Tile64, Tile-Gx
- 100 cores, mesh network

* Intel Polaris
- 80 cores, mesh network

* Intel SCC

- 48 cores, mesh network, no cache coherency

* Intel MIC (Multi Integrated Core)
- Knight’s Corner/Landing - Xeon Phi
- 60+ cores, ring bus/mesh

DATA

~
| &1
=7

Scale and Structure

* Tilera Tile64 (newest: Mellanox TILE-GXx), Intel Polaris

DDR2 Controller 1

DDR2 Controller 0

uy
M I T T

DDR2 Controller 2

DDR2 Controller 3

31 | COMP9242S2/2018 W11

Cache and Memory and IPC

* Intel SCC

Interprocessor Communication

* Beehive
— — - — - —
{ aN=ma i s .
: c—-.L— 0—{ Lé:-—\.‘*;ﬁb‘ o""": .—J (.v'. - —
' w L - ‘iJ 4 _J d L—J g
iy =
B ey 1L
L e L
-
N ' . — -
! | ! & [-
el e B mc—-—q&:ln-..‘ - }F!."i'.‘.-;;,.
"——WL/] * . J : g - eeee
- - 2
- .
= | :

[reevam]

DATA

33 | COMP9242 S2/2018 W11 N7

~
b1

Interconnect
* Intel MIC (Multi Integrated Core) (Knight’s Corner/Landing - Xeon Phi)

2| |2
2| |3
34 | COMP9242S2/2018 W11

Summary
* Scalability

- 100+ cores
- Amdahl’s law really kicks in

* Heterogeneity
- Heterogeneous cores, memory, etc.
- Properties of similar systems may vary wildly (e.g. interconnect topology and latencies between
different AMD platforms)

* NUMA

- Also variable latencies due to topology and cache coherence

* Cache coherence may not be possible
- Can’t use it for locking
- Shared data structures require explicit work

* Computer is a distributed system
- Message passing
- Consistency and Synchronisation
- Fault tolerance

e
DATA

35 | COMP9242 $2/2018 W11 N7

Optimisation for Scalability

* Reduce amount of code in critical sections
- Increases concurrency

- Fine grained locking

* Lock data not code
* Tradeoff: more concurrency but more locking (and locking causes serialisation)

- Lock free data structures

* Avoid expensive memory access
- Avoid uncached memory
- Access cheap (close) memory

DATA

37 | COMP9242 S2/2018 W11 % ~N 7

e
b1

Optimisation for Scalability

* Reduce false sharing
- Pad data structures to cache lines

* Reduce cache line bouncing
- Reduce sharing
- E.g: MCS locks use local data

* Reduce cache misses
- Affinity scheduling: run process on the core where it last ran.
- Avoid cache pollution

e
DATA

38 | COMP9242 52/2018 W11 N7

OS Design Guidelines for Modern (and future)

Multiprocessors

* Avoid shared data
- Performance issues arise less from lock contention than from data locality

* Explicit communication
- Regain control over communication costs (and predictability)
- Sometimes it’s the only option

* Tradeoff: parallelism vs synchronisation
- Synchronisation introduces serialisation
- Make concurrent threads independent: reduce crit sections & cache misses

* Allocate for locality
- E.g. provide memory local to a core

* Schedule for locality
- With cached data
- With local memory

* Tradeoff: uniprocessor performance vs scalability

e
DATA

39 | COMP9242 $2/2018 W11 N7

Design approaches

* Divide and conquer
- Divide multiprocessor into smaller bits, use them as normal
- Using virtualisation
- Using exokernel

* Reduced sharing

- Brute force & Heroic Effort

* Find problems in existing OS and fix them

* E.g Linux rearchitecting: BKL -> fine grained locking
- By design

* Avoid shared data as much as possible

* No sharing
- Computer is a distributed system
* Do extra work to share!

DATA

40 | COMP9242 $2/2018 W11 % ~N 7

e
b1

Divide and Conquer

Disco
- Scalability is too hard!

* Context:
- ca. 1995, large ccNUMA multiprocessors appearing

- Scaling OSes requires extensive modifications

* Idea:
- Implement a scalable VMM
- Run multiple OS instances

* VMM has most of the features of a scalable OS:
- NUMA aware allocator
- Page replication, remapping, etc.

* VMM substantially simpler/cheaper to implement

* Modern incarnations of this
- Virtual servers (Amazon, etc.)
- Research (Cerberus)

% l a I
41 | COMP9242S2/2018 W11

Disco Architecture

O
c>()

(i)

- OS

\
|

SMP-OS

OS

OS

Thin OS

:

Disco

re g FL re (e B o s 8 e
1 1 1 I =
| el Intcrconncct ==l

ceNUMA Maduprocessor

[Bugnion et al, 1997]

% I a
42 | COMP9242S2/2018 W11

Disco Performance

o —
g | o
—~ 160 - - - Disco
-g Sync
2 140 Kernel
o User_stall

120 - User
B jo=|
g 100
2 80

m |

40 .

20

IRIX 1IVM 2VM 4VM 8VM 8VM/nis IRIX SplashOS
pmake RADIX

DATA

43 | COMP9242 $2/2018 W11 N7

Space-Time Partitioning

Tessellation
- Space-Time partitioning
- 2-level scheduling

* Context: le—— Application Partmons—tl Ic—‘s’e";"f;“g Sy St —]
~ 2000-... highly

Threads Threads Threads Threads

e REERE RS §§ § GEELE 1 R

- Berkeley Par Lab 2 Parallei
R:::::t‘i:n Filay - File Sys. SOMGO
Runtime Runtime

Tessellation OS (space-time partitioning)
' ' '

Multicore Hardware

e
DATA

44 | COMP9242 52/2018 W11 N7

Tessellation

L |
|
Library OS Custom
Functionality Application Scheduler
Resource Partition Conslr::inntg
Queries/Requests Resizing (Real-Time, Priority)
Partition Space Scheduling Time Scheduling T ;'
Management Partition
Layer Allocator H Belecet >a
B T R e S IR e S| N O R AT 35
Mechanism Partition QoS Channel —_—
Layer Implementation Authenticator 8
(Trusted) i
interconnect | Message Physical Performance
Bandwidth [Passang JICache Memory GPUs Counters

45 | COMP9242S2/2018 W11

Reduce Sharing

K42

* Context:
- 1997-2006: OS for ccNUMA systems
- IBM, U Toronto (Tornado, Hurricane)

* Goals:
- High locality
- Scalability

* Object Oriented
- Fine grained objects

* Clustered (Distributed) Objects
- Data locality

* Deferred deletion (RCU)
- Avoid locking

* NUMA aware memory allocator
- Memory locality

% I o I
46 | COMP9242S2/2018 W11

K42: Fine-grained objects

Traditional System OO Decomposed System

User-level
requests
System paths &
data structures
used to satisfy
requests

e much sharing e much less sharing
e betlter performance
[Appavoo, 2005)

% I a
47 | COMP9242 S2/2018 W11

K42: Clustered objects

* Globally valid object reference

* Resolves to
- Processor local representative

* Sharing, locking strategy local to each object

* Transparency
- Eases complexity
- Controlled introduction of locality

* Shared counter:
- inc, dec: local access
- val: communication

* Fast path:
- Access mostly local structures

48 | COMP9242S2/2018 W11

Proc o Proc Proc 2

-
e |

~N 7~

K42 Performance

Linux 2.4.19 P
- -~ K42 Shared VM Objects =
------ K42 Distributed VM Objects PP
"3‘.
o;..
2
; "
- -—r
- ,4-'
- ,""'-
//"
,/”
-) - - - - L] - - s 1 - et ¢ - L] g = € t
5 10 15 20

DATA

Processors -
| &1
=7

Corey

* Context
- 2008, high-end multicore servers, MIT

* Goals:
- Application control of OS sharing

* OS
- Exokernel-like, higher-level services as libraries
- By default only single core access to OS data structures
- Calls to control how data structures are shared

* Address Ranges
- Control private per core and shared address spaces

* Kernel Cores
- Dedicate cores to run specific kernel functions

* Shares
- Lookup tables for kernel objects allow control over which object identifiers are visible to other cores.

DATA

50 | COMP9242 S2/2018 W11l % ~N 7

e
b1

Linux Brute Force Scalability

* Context
- 2010, high-end multicore servers, MIT
* Goals:
. . ‘.
- Scaling commodity OS s Rt
. ope 40
* Linux scalability =
- (2010 — scale Linux to 48 cores) 2
a8 -
74
20 -
i
2
0
- memcached PosqreSOL Psearchy

Y-axas: (throughput with 48 cores) / (throughpm with one core)

% I o |
51 | COMP9242 S2/2018 W11

Linux Brute Force Scalability

* Apply lessons from parallel computing and past research
- sloppy counters,
- per-core data structs,
- fine-grained lock, lock free,
- cache lines
- 3002 lines of code changed

memcached
PostgreSQL

e

Mount tables
Open file table
Sloppy counters

b4 k.4 Apache
b4 Bxim

inode allocation

Lock-free dentry lookup
Super pages

DMA buffer allocation
Network stack false sharing
Paraliel accept

Application modifications

* Conclusion:
- no scalability reason to give up on traditional operating system organizations just yet.

DATA

52 | COMP9242 S2/2018 W11 % ~N 7

e
b1

Scalability of the API

* Context
- 2013, previous multicore projects at MIT

* Goals
- How to know if a system is really scalable?

* Workload-based evaluation
- Run workload, plot scalability, fix problems
- Did we miss any non-scalable workload?
- Did we find all bottlenecks?

* Is there something fundamental that makes a system non-scalable?
- The interface might be a fundamental bottleneck

e
DATA

53 | COMP9242 $2/2018 W11 N7

Scalable Commutativity Rule

* The Rule

- Whenever interface operations commute, they can be implemented in a way that scales.

* Commutative operations:
- Cannot distinguish order of operations from results
- Example:
* Creat:
* Requires that lowest available FD be returned
* Not commutative: can tell which one was run first

* Why are commutative operations scalable?
- results independent of order = communication is unnecessary
- without communication, no conflicts

* Informs software design process
- Design: design guideline for scalable interfaces
- Implementation: clear target
- Test: workload-independent testing

DATA

54 | COMP92425S2/2018 W11 % ~N 7

e
b1

Q.

Commuter: An Automated Scalability Testing Tool

(Linux 3.8, ramf's)

Alltests
confiict-free

Symbolic model

Commutativity
conditions

Al tests
conflicted

All tests (sv6)
confici-free

Test cases

Linux

Conflicting cache lines

renreac Al tes‘s
= Yo
55 | COMP9242 S2/2018 W11

FlexSC

* Context:

- 2010, commodity multicores

- U Toronto

* Goal:

- Reduce context switch overhead of system calls

Syscall impact on user-mode IPC

Syscall exception

Lost performance (cycles)

o 2000 4000 €000 S000 10000 12000 14200 16000

. T i
* Syscall context switch: e Gyen)

- Usual mode switch overhead

- But: cache and TLB pollution!
Syscall Instructions Cycles IPC i-cache d-cache L2 L3 d-TLB
stat 4972 13585 | 0.37 32 186 660 | 2559 21
pread 3739 12300 0.30 32 204 679 2160 20
pwrite 5689 31285 0.18 50 373 985 3160 44
open+4close 6631 19162 0.34 47 240 900 3534 28
mmap-4-munmnap 8977 19079 0.47 41 233 869 3913 7
open+write+4close 9921 32815 0.30 78 481 1462 5105 49

56 | COMP9242S2/2018 W11

| B1
~ 7

FlexSC

* Asynchronous system calls
- Batch system calls
- Run them on dedicated cores

* FlexSC-Threads
- MonN
- M>>N

TR e

~
&™)

\/

57 | COMP9242 S2/2018 W11

FlexSC Results

- A — ABO00 -
$ o ® fenne £ 000 ® fexsc
$ e ®ayne S 3m00 > 3ync
g 20000 X 200m
i N2 -9 — v § +2000
g 0o & e -
- ° 200 "0 wo 200 ro00 » 200 poos oo — -~
Requeat Concurrency Mequeat Coscurrency
8y I Qo (b) 2 Cores

Apache
FlexSC: batching,
sys call core redirect

Thmughpi (requests’ sec

e
3"

58 | COMP9242 52/2018 W1l (c) 4 Cores

No sharing

* Multikernel
- Barrelfish
- fos: factored operating system

| Traditional OSes > < Multikernel |

g -
Shared state, Finer-grained Clustered objects, Distributed state,
one-big-lock locking partitioning replica maintenance

% I o I
59 | COMP92425S2/2018 W11

Barrelfish

* Context:
- 2007 large multicore machines appearing
- 100s of cores on the horizon
- NUMA (cc and non-cc)
- ETH Zurich and Microsoft

* Goals:
- Scale to many cores
- Support and manage heterogeneous hardware

* Approach:
- Structure OS as distributed system

* Design principles:
- Interprocessor communication is explicit

- OS structure hardware neutral
- State is replicated

* Microkernel
- Similar to sel4: capabilities

% I o I
60 | COMP9242 S2/2018 W11

Barrelfish

User
space:

Kernel

space:

Hardware:

% I o I
61 | COMP92425S2/2018 W11

App App App
Monitor Monitor =~ | ==
URPC
CPU CPU
driver driver Send IPI
Xx86-64 Xx86-64
CPU / APIC CPU/APIC =
MMU MMU Cache-coherence,
Interrupts

App

Monitor

CPU
driver
X86-64
CPU / APIC
MMU

Barrelfish: Replication

* Kernel + Monitor:
- Only memory shared for message channels

* Monitor:
- Collectively coordinate system-wide state

* System-wide state:
- Memory allocation tables
- Address space mappings
- Capability lists
* What state is replicated in Barrelfish
- Capability lists

* Consistency and Coordination
- Retype: two-phase commit to globally execute operation in order
- Page (re/un)mapping: one-phase commit to synchronise TLBs

e
DATA

62 | COMP9242 $2/2018 W11 N7

Barrelfish: Communication

* Different mechanismes:
- Intra-core
* Kernel endpoints
- Inter-core
* URPC

* URPC sender > receiver

- Uses cache coherence + polling
- Shared bufffer
* Sender writes a cache line
* Receiver polls on cache line v
* (last word so no part message)
- Polling?
* Cache only changes when sender writes, so poll is cheap
* Switch to block and IPI if wait is too long.

DATA

63 | COMP9242 S2/2018 W11 % ~N 7

e
b1

Barrelfish: Results

* Message passing vs caching

12
SHM8 —=&—
SHMg —&—
10 F SHM2 ——<—
. SHM1 ————
S MSGE8 —v—
O 8 F MSGl1 ——
” Server _
D _—
\%: ° o /
> =
= |~ /
& —
2[
L —<— . . , -+ —
o : @ —o—9 o ® ® v o e 1
2 4 6 10 12 14 1

64 | COMP9242S2/2018 W11

6$|

e
DATA
b1

~N 7~

Barrelfish: Results

* Broadcast vs Multicast

14
Broadcast ———
Unicast ——<«—
12 F Multicast ————
NUMA-Aware Multicast —=—
S 10 F
©
X
wn S8 F
QL
=,
2 ef
(@)
(-
= i
LIB 4 — — = =] = i
2
O 1 1 1 1 1 1 1 1 1 1 1 1 1 1 /
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32$|E1ATA
N

65 | COMP9242 S2/2018 W11

Barrelfish: Results

* TLB shootdown

60 -
Windows ————
Linux +——<——
so Barrelfish ———
)
o
S 40 [
<
w
L
S 307
=
o)
o 20 |
L -
—1
_“ = —

10 12 14 16 18 20 22 24 26 28 30 32 %IDATAI

66 | COMP9242S2/2018 W11

Summary

* Trends in multicore
- Scale (100+ cores)
- NUMA
- No cache coherence
- Distributed system
- Heterogeneity

* OS design guidelines
- Avoid shared data
- Explicit communication
- Locality

* Approaches to multicore OS
- Partition the machine (Disco, Tessellation)
- Reduce sharing (K42, Corey, Linux, FlexSC, scalable commutativity)
- No sharing (Barrelfish, fos)

% I o I
68 | COMP9242S2/2018 W11

