
Implement Checkpointing for
Android

(to speed up boot time and development process)

Jim Huang (黃敬群) <jserv@0xlab.org>

Kito Cheng (程皇嘉) <kito@0xlab.org>

Developer, 0xlab
Nov 5, 2012 ! Embedded Linux Conference Europe

Rights to copy

Attribution – ShareAlike 3.0
You are free

to copy, distribute, display, and perform the work
to make derivative works
to make commercial use of the work

Under the following conditions
Attribution. You must give the original author credit.
Share Alike. If you alter, transform, or build upon this work, you may distribute the
resulting work only under a license identical to this one.

For any reuse or distribution, you must make clear to others the license terms of this work.
Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.
License text: http://creativecommons.org/licenses/by-sa/3.0/legalcode

© Copyright 2012 0xlab
http://0xlab.org/

contact@0xlab.org

Corrections, suggestions, contributions and translations
are welcome!

Latest update: Nov 21, 2012

http://creativecommons.org/licenses/by-sa/3.0/legalcode

Basic Idea: Process Migration

• Process Migration (in past applications)
– Distributed Load Balancing

– Efficient Resource Utilization

• Crash Recovery and Rollback Transaction
– Useful to system admin

Node

Processes

Communication Channel

Node

Processes

Node

Processes

TCP/IP

Library Library Library

TCP/IP TCP/IP

Checkpoint

Checkpointing

• From Wikipedia:
– … is a technique for inserting fault tolerance into

computing systems. It basically consists of storing a
snapshot of the current application state, and later
on, use it for restarting the execution in case of
failure.

• Used in distributed shared memory systems
• Even used in reversible debugger
• Different from virtual machine level snapshot/resume

mechanisms
– Checkpointing emphasizes on process level.

Ideas about Checkpointing for Android

• Resume to stored state for faster Android boot time
• Better product field trial experience due to regular

checkpointing
• Deploy problematic states for engineering analysis and

debugging transparently
• Q&A stress test purpose

Expectations of Checkpointing

• Application-transparent
– supports applications without modifications or recompilation

• Supports a broad class of applications
– Databases

– parallel / MPI apps

– desktop apps

• Comprehensive support for user-level state,
kernel-level state, and distributed computation and
communication state

• Supported on unmodified Linux kernel
– checkpoint-restart should be integrated by addons

Challenges in checkpoint and restore

• Network stack will continue to execute even after
application processes are stopped

• No system call interface to read or write control state
• No system call interface to read send socket buffers
• No system call interface to write receive socket buffers
• Consistency of control state and socket buffer state

Communication state checkpoint

Checkpoint State

Control

Rh

Rt
Recv
buffers

St

Sh

Send
buffers

ShRt+1

Timers,
Options,
etc.

Rh St+1 ShRt+1 XX

receive()

direct
access

direct
access

State for one socket

Rh

Rt

...

St

Sh

...

Rt+1
Rh

Sh

St+1

Timers,
Options,
etc.

Control

Recv buffers Send buffers

copied_seq
rcv_nxt snd_una

write_seq

Live Communication State

• Acquire network stack locks to
freeze TCP processing

• Save receive buffers using
socket receive system call in
peek mode

• Save send buffers by walking
kernel structures

• Copy control state from kernel
structures

• Modify two sequence numbers
in saved state to reflect empty
socket buffers

Communication state restart

Control

Live Communication State

copied_seq
rcv_nxt snd_una

write_seq

St

Sh

...

Send buffers

Checkpoint State

Control

Rh

Rt
Recv
buffers

St

Sh

Send
buffers

ShRt+1

Timers,
Options,
etc.

Rt+1 Sh

Rt+1
Rt+1

Sh

Timers,
Options,
etc.

Rh

Rt
Recv
data

direct
update

St+1

write()

To App by intercepted
receive system call

Sh

State for one socket

• Create a new socket
• Copy control state in

checkpoint to socket structure
• Restore checkpointed send

buffer data using the socket
write call

• Deliver checkpointed receive
buffer data to application on
demand

Existing Checkpointing mechanisms

• CryoPID
– http://cryopid.berlios.de/

• BLCR (Berkeley Lab Checkpoint/Restart)
– https://ftg.lbl.gov/projects/CheckpointRestart/

• DMTCP
– http://dmtcp.sourceforge.net/

http://cryopid.berlios.de/
https://ftg.lbl.gov/projects/CheckpointRestart/
http://dmtcp.sourceforge.net/

Implementation Considerations

• Checkpointing can be implemented in
– kernel modifications + helpers in userspace

– pure userspace

• Introduce a virtualization layer groups processes into specific
states with private virtual name space
– Intercepts system calls to expose only virtual identifiers (e.g.,

vpid)

– Preserves resource names and dependencies across
migration

• Mechanism to checkpoint and restart states

– User and kernel-level state

– Primarily uses system call handlers

– File system not saved or restored

DMTCP

• Distributed Multi-Threaded CheckPointing.
• Works with Linux Kernel 2.6.9 and later.
• Supports sequential and multi-threaded computations

across single/multiple hosts.
• Entirely in user space (no kernel modules or root

privilege).
– Transparent (no recompiling, no re-linking).

• Written in Northeastern University and MIT and under
active development since 2006.

• License: GNU LGPL (allows freely using and linking)

Process Structure
CT = DMTCP checkpoint thread
T = User Thread

DMTCP

Coordinator

CTCT

T1T1 T2

Signal (USR2)

Network Socket

Process 1 Process N

dmtcp_checkpoint <EXE> # starts coordinator
dmtcp_command –c # talks to coordinator
dmtcp_restart ckpt_<EXE>-*.dmtcp

• Coordinator: a stateless synchronization server for the
distributed checkpointing algorithm.

• Checkpoint/Restart performance related to size of memory,
disk write speed, and synchronization.

How DMTCP works (1/4)

• MTCP : component for checkpoint single-process
• SIGUSR2: Used internally from checkpoint thread to

user threads.

CT

T1 T2

User program

Checkpoint thread

1. CT send SIGUSR2 to
 each threads for suspend

2. Write checkpoint image
to disk

3. Exit SIGUSR2 handler,
and resume.

How DMTCP works (2/4)

• LD_PRELOAD: Transparently preloads checkpoint libraries
`dmtcphijack.so` which installs libc wrappers and checkpointing
code.

• Wrappers: Only on less heavily used calls to libc
– open, fork, exec, system, pipe, bind, listen,
setsockopt, connect, accept, clone, close, ptsname,
openlog, closelog, signal, sigaction, sigvec,
sigblock, sigsetmask, sigprocmask, rt_sigprocmask,
pthread_sigmask

– Overhead is negligible.

...
fd = open(path,
 flags);
...

User Program

int open(const char *path,
 int flags){
...
funcs[_open](path, flags);
...
}

dmtcphijack.so

int open(const char *path,
 int flags){
...
}

libc.so

How DMTCP works (3/4)

• Additional wrappers when process id & thread id
virtualization is enabled
– getpid, getppid, gettid, tcgetpgrp,
tcsetprgrp, getgrp, setpgrp, getsid,
setsid, kill, tkill, tgkill, wait, waitpid,
waitid, wait3, wait4

...
pid = getpid();
...

User Program

int getpid(){
...
real_pid = funcs[_getpid]();
return pid_table[real_pid];
}

dmtcphijack.so

int getpid(){
...
}

libc.so

How DMTCP works (4/4)

• Checkpoint image compression on-the-fly (default).
• Currently only supports dynamically linking to libc.so.

Support for static libc.a is feasible, but not
implemented.

Checkpoint under DMTCP(1/7)

• dmtcphijack.so and libmtcp.so present in executable’s
memory.
– dmtcp_checkpoint <EXE>

CT

T1 T2

Coordinator

User program

Connect to exist coordinator
 or create a new coordinator

CT

T1 T2

User program

Checkpoint under DMTCP(2/7)

• Ask coordinator process for checkpoint via
dmtcp_command.
– dmtcp_command -c

• DMTCP also provides API to send command or query
status

CT

T1 T2

Coordinator

User program

command

Send checkpoint
command

CT

T1 T2

User program

Checkpoint under DMTCP(3/7)

• Suspend user threads with SIGUSR2.

CT

T1 T2

Coordinator

User program

1. send command
 for prepare
 checkpoint

2. CT send SIGUSR2 to
 each threads for suspend

CT

T1 T2

User program

Checkpoint under DMTCP(4/7)

• Pre-checkpoint stage
• Synchronize every node and elect shared file

descriptor leaders.
• Drain kernel buffers and do network handshake with

peers.

CT

T1 T2

Coordinator

User program

2. Drain buffersCT

T1 T2

User program

Wait until all node are ready.

1. Report all thread
except CT are suspended

Checkpoint under DMTCP(5/7)

• Write checkpoint to disk
– One checkpoint file per process

– ckpt_<EXE>_<uid>.dmtcp

CT

T1 T2

Coordinator

User program

Write checkpoint to
 disk seprately

CT

T1 T2

User program

Wait until all node
 checkpoint are done

Checkpoint under DMTCP(6/7)

• Post-Checkpint stage
• Refill kernel buffers

CT

T1 T2

Coordinator

User program

Refill buffer and
re-handshake with peers.

CT

T1 T2

User program

Wait until all node
 post-checkpoint are done

Checkpoint under DMTCP(7/7)

• Resume user threads.

CT

T1 T2

Coordinator

User program

Resume!CT

T1 T2

User program

Send resume command

Restart under DMTCP(1/6)

• Restart Process loads in memory.
– dmtcp_restart ckpt_<EXE>_<uid>.dmtcp

CT

Coordinator

dmtcp_restart

1. Connect to exist coordinator
 or create a new coordinator

2. Load process to memroy

Restart under DMTCP(2/6)

• Fork user program

CT

Coordinator

dmtcp_restart

CT

dmtcp_restart

Restart under DMTCP(3/6)

• Reopen files and recreate ptys
• Recreate and reconnect sockets
• Rearrange file descriptors to initial layout

CT

Coordinator

dmtcp_restart

Wail all node recreate socket
and reopen file

1. Reopen file/ptys/sockets

CT

dmtcp_restart

2. Rearrange FD via dup2

Restart under DMTCP(4/6)

• Restore memory content.
• Restore stack status for checkpoint thread.

CT

Coordinator

dmtcp_restart

CT

dmtcp_restart

CT

Coordinator

CT

User programUser program

dmtcp_restart

mtcp_restart

User program

execve

mmap + magic!!

FDs will preserved across execve!

Restart under DMTCP(5/6)

• Restore other threads.
– Recreate thread and restore stack and context.

– Restore back to the post-checkpint stage

• Refill kernel buffer

CT

Coordinator
Wail all node restore done

1. Memory and thread
come back now!

CT

T1 T2T1 T2

User programUser program

2. Refill buffers

Restart under DMTCP(6/6)

• Resume user threads

CT

Coordinator

Resume!CT

T1 T2T1 T2

User programUser program

<user_func1>

<user_func2>

<user_funcN>...

<sig-handler>

stopthisthread

Thread Call Stack

...
while (mtcp_state_value(&thread -> state)
 == ST_SUSPENDED) {
 mtcp_state_futex (&(thread -> state),
 FUTEX_WAIT,
 ST_SUSPENDED,
 NULL);
}
...

DMTCP Workflow
Start with dmtcp

wrapper

Run

Pre-Checkpoint

Checkpoint

Post-Checkpoint

Restart

Re-open FDs

Restore memory

Restore threads

Provide hook
 point!

Get checkpoint
command

OS Features supported by DMTCP

• Threads, mutexes/semaphores, fork, exec
• Shared memory (via mmap), TCP/IP sockets, UNIX

domain sockets, pipes, ptys, terminal modes,
ownership of controlling terminals, signal handlers,
open and/or shared fds, I/O (including the readline
library), parent-child process relationships, process id
& thread id virtualization, session and process group
ids, and more…

DMTCP/Android: Additional Features
(LGPL; separated from Android)

• ARM Architecture support
– Verified on Samsung Galaxy S2 + Android 4.0

• Binder IPC
– Client: supported

– Server: partially supported

• Ashmem: supported

• Logger: supported
• Properties: supported

• Wakelocks: Not supported

Source code is available
https://github.com/0xlab/dmtcp-android
https://github.com/0xlab/android-checkpoint

Support new FD type in DMTCP

• In DMTCP, every FD has an associated `Connection`:
– TcpConnection, FileConnection, PtyConnection

• Implement a new subclass of Connection if you want to
support a new FD type for Android:

● AshmemConnection, BinderConnection,
LoggerConnection, PropertyConnection

• Also, implement the preCheckpoint,
postCheckpint, and any others if needed.

Interface of Connection
 class Connection {
 public:
 virtual void preCheckpoint (const dmtcp::vector<int>&,
 KernelBufferDrainer&);
 virtual void postCheckpoint (const dmtcp::vector<int>&,
 bool);
 virtual void restore (const dmtcp::vector<int>&,
 ConnectionRewirer *);
 virtual bool isDupConnection (const Connection&,
 dmtcp::ConnectionToFds&);
 virtual void doLocking (const dmtcp::vector<int>&);
 virtual void saveOptions (const dmtcp::vector<int>&);
 virtual void restoreOptions (const dmtcp::vector<int>&);
 virtual void doSendHandshakes (const dmtcp::vector<int>&,
 const dmtcp::UniquePid&);
 virtual void doRecvHandshakes (const dmtcp::vector<int>&,
 const dmtcp::UniquePid&);
 virtual void restartDup2 (int, int);
 protected:
 virtual void serializeSubClass (jalib::JBinarySerializer&);
 };

Android Binder support for DMTCP

• BinderConnection
– Reopen /dev/binder and reset ioctl parameters

– Restore the mmap region

• Hijack the whole libbinder
– Prevent libbinder from interpreting data twice

– Implement necessary DMTCP hooks: preCheckpoint,
postCheckpoint, postRestart

• Re-initialize libbinder in postRestart

• The server part is partially supported because binder
server is calling a blocked ioctl and blocking the whole
checkpoint process.

– We implement an early checkpoint stage to suspend
such kind of threads.

More extensions in DMTCP/Android

• Improve the hook system in DMTCP
– Original design only allows one set hook function.

– Allow more than one set hook function in
DMTCP/Android.

• Implement per thread callback hook
– Restore the DVM internal thread info

• Add barrier and synchronize mechanisms to DMTCP

– In order to make precise program checkpointing.

Android specific modifications

• Reorder code in framework
– registerZygoteSocket()

• The socket is inherited from the parent process `init`,
which implies we can not handle it in DMTCP.

– Move few initializations later than the checkpoint process
since the current binder support is incomplete.

• Reserve the ashmem's file descriptor
– Original behavior is to close the fd after mmap

– DMTCP binds connection to one fd, so the connection will be
destroyed if that fd is closed.

• Implement the missing PThread function in bionic libc

– pthread_tryjoin_np is required by DMTCP,

but it s not implemented in original bionic.

Technical Issues when modifying
DMTCP

• ARM Architecture support is incomplete.
– We are going to contribute back to upstream.

• Different TLS implementation semantics between glibc and
bionic libc
– DMTCP/Android follows the techniques used in Android´s

OpenGL ES package which links and defers to the slot of
TLS in bionic libc. Not elegant, but it works

• PThread implementation expectation is quite different
– AOSP master branch is merging libc from NetBSD, so it

should be better for compatibility.

• Behavior of dynamic linker differs a lot in bionic libc.
• Flags in dlopen() is not really functional.
• The way to find symbol in bionic libc differs: weak symbol

Checkpoint for Zygote

• Experiment environment:
– Android-x86 ICS emulated by VirtualBox

– Host: Thinkpad x200 (Intel Core 2 Due @ 2.4 GHz)

with gzip without gzip

Checkpoint time
~10s ~5.5s

Restart time
~0.5s ~0.2s

Image size
~3M ~17M

--------- beginning of /dev/log/system
I/Vold (1270): Vold 2.1 (the revenge) firing up
D/Vold (1270): Volume usb state changing -1 (Initializing) -> 0 (No-Media)
I/Netd (1271): Netd 1.0 starting
I/ (1275): ServiceManager: 0x8062b50
I/ (1276): ServiceManager: 0x804fb98
I/AudioFlinger(1276): Loaded primary audio interface from LEGACY Audio HW HAL (audio)
I/AudioFlinger(1276): Using 'LEGACY Audio HW HAL' (audio.primary) as the primary audio interface
...
D/AudioHardware(1276): ### setVoiceVolume: 1.000000
I/AudioPolicyService(1276): [1276]Loaded audio policy from LEGACY Audio Policy HAL (audio_policy)
E/BatteryService(1382): usbOnlinePath not found
D/AndroidRuntime(1902):
D/AndroidRuntime(1902): >>>>>> AndroidRuntime START com.android.internal.os.ZygoteInit <<<<<<
D/AndroidRuntime(1902): CheckJNI is ON
I/SamplingProfilerIntegration(1902): Profiling disabled.
I/Zygote (1902): Preloading classes...
D/dalvikvm(1902): GC_EXPLICIT freed 35K, 85% free 399K/2560K, paused 0ms+0ms
...
I/Zygote (1902): ...preloaded 379 resources in 548ms.
D/dalvikvm(1902): GC_EXPLICIT freed 20K, 1% free 6417K/6467K, paused 0ms+0ms
I/Zygote (1902): ...preloaded 31 resources in 13ms.
D/dalvikvm(1902): GC_EXPLICIT freed 14K, 1% free 6418K/6467K, paused 0ms+0ms
D/dalvikvm(1902): GC_EXPLICIT freed 5K, 1% free 6412K/6467K, paused 0ms+0ms
D/dalvikvm(1902): GC_EXPLICIT freed <1K, 1% free 6412K/6467K, paused 0ms+2ms
I/dalvikvm(1902): System server process 1911 has been created

--------- beginning of /dev/log/system
I/Vold (1270): Vold 2.1 (the revenge) firing up
D/Vold (1270): Volume usb state changing -1 (Initializing) -> 0 (No-Media)
I/Netd (1271): Netd 1.0 starting
I/ (1275): ServiceManager: 0x8062b50
I/ (1276): ServiceManager: 0x804fb98
I/AudioFlinger(1276): Loaded primary audio interface from LEGACY Audio HW HAL (audio)
I/AudioFlinger(1276): Using 'LEGACY Audio HW HAL' (audio.primary) as the primary audio interface
….
D/AudioHardware(1276): ### setVoiceVolume: 1.000000
I/AudioPolicyService(1276): [1276]Loaded audio policy from LEGACY Audio Policy HAL (audio_policy)
D/dalvikvm(1373): GC_EXPLICIT freed 14K, 1% free 6418K/6467K, paused 0ms+1ms
D/dalvikvm(1373): GC_EXPLICIT freed 5K, 1% free 6412K/6467K, paused 0ms+0ms
D/dalvikvm(1373): GC_EXPLICIT freed <1K, 1% free 6412K/6467K, paused 0ms+1ms
I/dalvikvm(1373): System server process 1382 has been created

Normal bootup log message Bootup log message with restart

Observations from logcat

Android Boottime with DMTCP

Measured by uptime in onStart() of Launcher2

1 2 3 4 5 6 7 8 9 10 avg

Boottime

27.96 27.95 32.89 26.59 32.33 32.36 33.22 32.99 36.47 32.85 31.56

Boottime
with DMTCP
(w/ gzip)

15.02 15.86 15.13 14.88 14.57 14.43 14.73 14.22 13.97 14.61 14.74

Boottime
with DMTCP
(w/o gzip)

14.98 15.13 14.61 13.90 14.72 14.84 15.46 15.06 15.32 15.39 14.94

Reversible Debugger based on DMTCP

• URDB is a universal reversible debugger that can add
reversibility gained through the use of DMTCP.

• A user debugging with gdb would then ask URDB to go
back to a point in time to when:
– the expression had a correct value

– the next statement would cause the expression to
take on an incorrect value.

• Project page: http://sourceforge.net/projects/urdb/

http://sourceforge.net/projects/urdb/

Reversible Debugger using
Checkpointing

Reference

• “DMTCP: An New Linux Checkpointing Mechanism for Vanilla
Universe Job”, Condor Project, University of
Wisconsin-Madison

• “Checkpointing using DMTCP, Condor, Matlab and FReD”,
Gene Cooperman, Northeastern University, Boston

• URDB: Universal Reversible Debugger
http://arxiv.org/abs/0910.5046

• Cruz: Application-Transparent Distributed Checkpoint-Restart
on Standard Operating Systems, G. (John) Janakiraman, Jose
Renato Santos, Dinesh Subhraveti, Yoshio Turner, HP Labs

http://arxiv.org/abs/0910.5046

http://0xlab.org

	投影片 1
	投影片 2
	投影片 3
	投影片 4
	投影片 5
	投影片 6
	投影片 7
	投影片 8
	投影片 9
	投影片 10
	投影片 11
	投影片 12
	投影片 13
	投影片 14
	投影片 15
	投影片 16
	投影片 17
	投影片 18
	投影片 19
	投影片 20
	投影片 21
	投影片 22
	投影片 23
	投影片 24
	投影片 25
	投影片 26
	投影片 27
	投影片 28
	投影片 29
	投影片 30
	投影片 31
	投影片 32
	投影片 33
	投影片 34
	投影片 35
	投影片 36
	投影片 37
	投影片 38
	投影片 39
	投影片 40
	投影片 41
	投影片 42
	投影片 43
	投影片 44
	投影片 45
	投影片 46

