Course: Design and Implementation of Embedded Operating Systems (2015 Spring)
考試時間：300分鐘

每題10分，共25題
1. (Multiple choice) A C++ program compiled on a given system is:

A) dependent on that system’s hardware

B) dependent on that system’s operating system

C) dependent on that system’s hardware and operating system

D) can be run on any hardware as long as it has the same operating system

E) can be run on any operating system as long as it has the same hardware

F) can be run on all hardware and operating system platforms
2. Multiprogramming enables programs to complete faster than when they are run

sequentially. We can develop a simple model for estimating the net CPU utilization by

assuming all processes P are independent and spend an equal fraction p of their time waiting for I/O to complete. With n processes in memory at once the probability that all are waiting for I/O at the same time is pn . The CPU utilization, also known as the degree of multiprogramming, is given by 1 - pn . Suppose two jobs start simultaneously with the following requirements:

· each requires 10 minutes of CPU time

· each spends 50% of its time waiting for I/O to complete (i.e. utilization = 0.5)

How long if they run in parallel?
3. Assume a function f calls a function g using the C calling conventions of UNIX v6 on the PDP-11. The callee function g takes two arguments, as follows:

void g(int x, int y) { … }
And, there is the stack at the point that f is about to call g. So far f’s own local variables and other private state are already on the stack, but nothing related to its call to g. Draw the stack at the point just before the processor executes the first instruction of g that does “real” work, after running g’s function prologue.

(Hint: the arguments y and x, the return address, and callee-saved registers.)
4. Consider the following C code that calls fork(). If you assume that the child process always runs before the parent process, what will be the output?

int main() {

 for (int i = 0; i < 3; i++) {

 if (fork() == 0) {

 printf("Child sees i = %d\n", i);

 exit(1);

 } else

 printf("Parent sees i = %d\n", i);

 }

}
5. In some multi-threaded applications, m user-level threads are mapped to n kernel-level threads. Why can this be a good idea (compared to using only user-level or only kernel-level threads)?
6. List two key distinctions between a semaphore and a monitor.
7. What is distinction between deadlock and starvation?
8. Describe why direct memory access (DMA) is considered an efficient mechanism for performing I/O.
9. Page fault must be preceded by a TLB miss, but a TLB miss does not necessarily mean a page fault. True or false? Explain why.
10. Assume a system has a TLB hit ratio of 99%. It requires 10 nanoseconds to access the TLB, and 90 nanoseconds to access main memory. What is the effective memory access time in nanoseconds for this system?
11. Suppose a system provides the following atomic hardware instruction:

boolean TestAndSet (boolean *target) {

 boolean rv = *target;

 *target = TRUE;

 return rv:

}
Write the pseudo code for a synchronized process which utilizes this instruction to ensure critical section.
12. What is a critical section? List the the requirements that a solution to the critical section problem must satisfy.
13. Consider this definition of semaphores, call it version 1:
 wait(s): signal(s):
 ------- ---------
 s = s - 1 s = s + 1
 if (s < 0) if (s <= 0)
 block wakeup a waiting thread
 else
 enter critical section
Also, consider this definition, call it version 2:
 wait(s): signal(s):
 ------- ---------
 if (s <= 0) if (a thread is waiting)
 block wakeup a waiting thread
 s = s - 1 s = s + 1
 enter critical section
How do these definitions compare? Assuming they are implemented correctly (atomically), do they both work? If not, which one does not work, and why? If they do both work, is there any difference between them?

14. Consider the following sort algorithm:

Sort(array)

T = make an empty red/black tree

for each element e in array

add e to T

for i=0 to array.length-1

e = T.FindMinimum

T.Remove(e)

array[i] = e

What is the time complexity (i.e. O of what?) of this sort?
15. Assume an OS uses round robin scheduling. A context switch takes 0.002 msec while interrupt handling takes 0.001 msec per interrupt. If the quantum length is 10 msec and interrupts arrive every 10 msec (at the middle of every quantum), what is the CPU efficiency. CPU efficiency is defned as the ratio of useful CPU time (used to run processes) to the total time.
16. Give two to three characteristics of each of the following sorting algorithms. Try to say something more informative than common knowledge like “Quick sort takes O(n log n) time on average.” Think what features, good or bad, of the sorting algorithm at hand distinguish it from (at least a few of) the others.

· Merge sort

· Heap sort

17. Consider the following data structure for a binary tree.

struct Tnode {

 int data;

 Tnode *left;

 Tnode *right;

 int height;

};
Where the height is calculated as follows: Leaf nodes have a height of zero. For all other nodes, height is calculated by taking the maximum of the heights of their left and right sub trees. If one of the left or right sub trees does not exist, then its height should be assumed as zero. Write a recursive function that calculates the heights of all nodes.
18. Given a binary search tree structure declared as follows.

typedef struct {

 int item; struct tree *parent, *left, *right;

} tree;
Please complete following function which searches for a given data in the tree.

tree *search_tree(tree *l, int x) {

 if (l == NULL) return(NULL);

…

}
19. What is the difference between “user mode” and “supervisor mode” in

the ARM processor? How does the microprocessor make the transition between these two modes?
20. A box contains 3 blue marbles and 3 red marbles. You select two at random.

If they are the same color, you win 2 dollars. Otherwise you lose one dollar.

Let X be your winnings.

(a) What is the probability of winning this game?

(b) What’s V ar(X)?
21. What is a random variable? and what role do they play in statistics?
22. Given memory holes of sizes 100K, 500K, 200K, 300K, and 600K (in order), how would each of the following algorithms place processes of 212K, 417K, 112K, and

426K (in order)? (a) First-fit b) Best-fit
23. Assume we have the following code in a device driver:

lock();

p->y++;

unlock();
If p came from the kernel, what's broken about this code? How would you have to fix it?
24. Describe the difference between a synchronous and an asynchronous send operation. What can you say about the size of the buffer in each?
25. A common way to implement concurrent inserts is using an atomic TSL (Test-Set-and-Lock) instruction:

List *list = NULL; int insert_lock = 0;

insert(int data) {

 /* acquire the lock: */

 while (TSL(&insert_lock) != 0) ;

 /* critical section: */

 List *l = new List; l->data = data;

 l->next = list; list = l;

 /* release the lock: */

 insert_lock = 0;

}
Many processors support an atomic cmpxchg instruction as the following semantics:
int cmpxchg(addr, v1, v2) {
 int ret = 0;
 /* stop all memory activity and ignore interrupts */
 if (*addr == v1) {
 *addr = v2;
 ret = 1;
 }
 /* resume other memory activity and take interrupts */
 return ret;

}
Please give an implementation of insert using the cmpxchg instruction.
班級：_______________

學號：_______________

姓名：_______________

