
2/21

Roadmap

Concurrency Bugs

Deadlocks



3/21

Introduction

I Concurrent programming is hard, and concurrent bugs are
frequent:

src: Lu et al.

Non-deadlocks Of which 97% are of one one of two types
Atomicity violation
Order violation

Deadlocks Represent about one 3rd of all concurrency bugs
fixed



4/21

Atomicity Violation Bugs

What is wrong here?

I There is an assumption that a code segment is executed
atomically

I But the scheduler has the last word
How can we fix, this?

I Use synchronization



4/21

Atomicity Violation Bugs

What is wrong here?
I There is an assumption that a code segment is executed

atomically
I But the scheduler has the last word

How can we fix, this?

I Use synchronization



4/21

Atomicity Violation Bugs

What is wrong here?
I There is an assumption that a code segment is executed

atomically
I But the scheduler has the last word

How can we fix, this?
I Use synchronization



5/21

Atomicity Violation Bugs Fix



6/21

Order Violation Bugs

What is wrong here?

I There is an assumption that code segment are executed in
a given order

I But, again, the scheduler has the last word
How can we fix, this?

I Use synchronization



6/21

Order Violation Bugs

What is wrong here?
I There is an assumption that code segment are executed in

a given order
I But, again, the scheduler has the last word

How can we fix, this?

I Use synchronization



6/21

Order Violation Bugs

What is wrong here?
I There is an assumption that code segment are executed in

a given order
I But, again, the scheduler has the last word

How can we fix, this?
I Use synchronization



7/21

Order Violation Bugs Fix



8/21

Roadmap

Concurrency Bugs

Deadlocks



9/21

Deadlocks

Deadlock is a classic problem
I We have already mentioned it a couple of times
I Atomicity-violation and order-violation problems are "easy"

to avoid
I Deadlocks are hard to avoid, and have been the subject of

extensive research
Example

What can go wrong here?

I Think about the wrong order of scheduling decision



9/21

Deadlocks

Deadlock is a classic problem
I We have already mentioned it a couple of times
I Atomicity-violation and order-violation problems are "easy"

to avoid
I Deadlocks are hard to avoid, and have been the subject of

extensive research
Example

What can go wrong here?
I Think about the wrong order of scheduling decision



10/21

Deadlock: Resource allocation graph

Thread 1: Thread 2:
lock(L1)

lock(L2)
lock(L2)

lock(L1)

I A cycle in a resource allocation graph (when there is one
instance of each resource) is indicative of deadlock



11/21

Deadlocks: Are hard to avoid

Complex dependencies in large code bases. For example in an
OS:
I The VM system may use the file system to page in a block

from disk;
I The file system may request a page from the VM to read

the block into
Abstraction more precisely encapsulation.

I Hiding implementation details helps code modularity and
reuse

I But implementation details may be critical for avoiding
deadlocks



12/21

Deadlocks: Encapsulation

Example Consider the Java Vector class and its AddAll()
method for merging two vectors
Vector v1, v2;

v1.addAll(v2);

What can go wrong?

I For this method to be thread-safe, we need to acquire locks
on both vectors
I The java.util.Vector class is not thread-safe

I Let’s assume we take a lock on v1 first and then on v2

And now, is it clear what can go wrong?
Thread 1 Thread 2

v1.addAll(v2) v2.addAll(v1)



12/21

Deadlocks: Encapsulation

Example Consider the Java Vector class and its AddAll()
method for merging two vectors
Vector v1, v2;

v1.addAll(v2);

What can go wrong?
I For this method to be thread-safe, we need to acquire locks

on both vectors
I The java.util.Vector class is not thread-safe

I Let’s assume we take a lock on v1 first and then on v2

And now, is it clear what can go wrong?

Thread 1 Thread 2

v1.addAll(v2) v2.addAll(v1)



12/21

Deadlocks: Encapsulation

Example Consider the Java Vector class and its AddAll()
method for merging two vectors
Vector v1, v2;

v1.addAll(v2);

What can go wrong?
I For this method to be thread-safe, we need to acquire locks

on both vectors
I The java.util.Vector class is not thread-safe

I Let’s assume we take a lock on v1 first and then on v2

And now, is it clear what can go wrong?
Thread 1 Thread 2

v1.addAll(v2) v2.addAll(v1)



13/21

Deadlocks: Necessary conditions

Mutual exclusion Threads claim exclusive control of resources
they require
I E.g. a thread grabs a lock

Hold and wait Threads hold resources allocated to them (e.g.
locks) while waiting for additional resources (e.g. other locks)

No preemption Resources (e.g. locks) cannot be forcibly removed
from threads that are holding them

Circular wait There is a circular chain of threads such that each
thread holds one or more resources (e.g., locks) that are being
requested by the next thread in the chain.

All four conditions must occur



13/21

Deadlocks: Necessary conditions

Mutual exclusion Threads claim exclusive control of resources
they require
I E.g. a thread grabs a lock

Hold and wait Threads hold resources allocated to them (e.g.
locks) while waiting for additional resources (e.g. other locks)

No preemption Resources (e.g. locks) cannot be forcibly removed
from threads that are holding them

Circular wait There is a circular chain of threads such that each
thread holds one or more resources (e.g., locks) that are being
requested by the next thread in the chain.

All four conditions must occur



14/21

Handling Deadlocks: Approaches

Prevention Ensure that at least one of the 4 required conditions do
not hold

Avoidance At run-time take resource allocation decisions (e.g.
granting locks) that cannot lead to deadlocks, i.e. play it safe
I Prevention (impedir) is a structural approach
I Avoidance (evitar) is a run-time approach

Detect and Recover
Ignore Tanenbaum calls it the ostrich algorithm



15/21

Prevention: Circular Wait

Obs. This is the approach most often used in practice
How to implement it? Define a total order for acquiring resources

(locks)
I E.g. if there are only 2 locks, L1 and L2
I If a thread needs both locks, always acquire L1 before L2

Optimization Use a partial order rather than a total order
I This makes it more manageable, not more performant

Example Linux memory mapping code
I Defines 10 partial orders

Issues The partial orders must be defined very carefully
I And followed strictly by the programmers

Check Remzi’s nice tip on the use of lock address for defining a
total order on pg. 12



16/21

Prevention: Hold-and-Wait

Idea Acquire all locks (resources) at once, atomically

What is the prevention mutex used for?
Issues

I Must know which locks are necessary ahead of time
I Likely to reduce concurrency



17/21

Prevention: No Preemption
Obs. Many resources must be held until explicitly released

I E.g., this is critical to prevent atomicity violations with locks
Idea If forced to wait, release all the locks already acquired

I Actually, this can be seen more as another way to prevent
hold-and-wait

Example Using trylock() rather than lock()

I Hard to use with encapsulation
I Nevertheless, might work with the addAll() method

I Although it might lead to a livelock (very unlikely)

Livelock a situation in which two or more threads are not blocked,
but nevertheless do not make progress, e.g. keep jumping to
top, never acquiring both locks



18/21

Prevention: Mutual Exclusion

Obs. Many resources must be held in mutual exclusion
I E.g., this is critical to prevent atomicity violations with locks

Idea Use lock-free data structures
I I.e. use powerful read-modify-write HW instructions to build

common data-structures without explicit locking (check
some examples, on pp. 10 and 11)

Issues
Livelock if there is contention and a thread looses, it needs to

retry;
Complexity it is not trivial to design wait-free data structures, but

slowly they are being added to some kernels, e.g. in Linux



19/21

Deadlock Avoidance

Assumes knowledge about which locks/resources various thread
may require

Idea dynamically allocate resources so as to avoid the occurrence
of deadlocks

Simple Example For illustration purposes, from the book:
T1 T2 T3 T4

L1 yes yes no no
L2 yes yes yes no

I Deadlocks can be avoided by not running threads T1 and
T2 simultaneously

I What if T1 or T2 are preempted?

Issue Assumption
I May be acceptable for safety-critical systems

I These use more sophisticated algorithms, e.g. priority ceiling



19/21

Deadlock Avoidance

Assumes knowledge about which locks/resources various thread
may require

Idea dynamically allocate resources so as to avoid the occurrence
of deadlocks

Simple Example For illustration purposes, from the book:
T1 T2 T3 T4

L1 yes yes no no
L2 yes yes yes no

I Deadlocks can be avoided by not running threads T1 and
T2 simultaneously

I What if T1 or T2 are preempted?

Issue Assumption
I May be acceptable for safety-critical systems

I These use more sophisticated algorithms, e.g. priority ceiling



19/21

Deadlock Avoidance

Assumes knowledge about which locks/resources various thread
may require

Idea dynamically allocate resources so as to avoid the occurrence
of deadlocks

Simple Example For illustration purposes, from the book:
T1 T2 T3 T4

L1 yes yes no no
L2 yes yes yes no

I Deadlocks can be avoided by not running threads T1 and
T2 simultaneously

I What if T1 or T2 are preempted?

Issue Assumption
I May be acceptable for safety-critical systems

I These use more sophisticated algorithms, e.g. priority ceiling



20/21

Detection and Recovery
Idea Let deadlocks occur, but when they occur detect them and

recover.
I May be acceptable, depending on the probability of

deadlock and on the cost of recovery
Detection algorithm Basically, checks if there is some order for

threads that currently have some lock/resource to terminate
When should it be run?

I Every time a resource request is made
I Periodically
I When the CPU utilization drops significantly

Recovery Just break one of the necessary conditions
Preempt may require human intervention;
Rollback requiries checkpointing the state periodically (used in

databases)
Terminate one or more threads, breaking the cycle

Which thread should be the victim?



20/21

Detection and Recovery
Idea Let deadlocks occur, but when they occur detect them and

recover.
I May be acceptable, depending on the probability of

deadlock and on the cost of recovery
Detection algorithm Basically, checks if there is some order for

threads that currently have some lock/resource to terminate
When should it be run?

I Every time a resource request is made
I Periodically
I When the CPU utilization drops significantly

Recovery Just break one of the necessary conditions
Preempt may require human intervention;
Rollback requiries checkpointing the state periodically (used in

databases)
Terminate one or more threads, breaking the cycle

Which thread should be the victim?



21/21

Conclusion

I Concurrent programming is hard, and concurrent bugs are
frequent:

Deadlocks Represent about one 3rd of all concurrency bugs
fixed (except for database systems)

Non-deadlocks Of which 97% are of one one of two types
Atomicity violation
Order violation

What does this mean?
I Deadlocks are not that common?
I Deadlocks are rare and elusive (and users just reboot the

system when they happen)?


