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Agenda

• Review Operating System Concepts
• Mars Pathfinder:

– Problem: Priority Inversion
– Solutions

• Resource Access Protocols
• Implementation Considerations



Review Operating System Concepts



Consider the Function Calls

Process A

send_to_printer(59, “What a beautiful day!”);

Process B

send_to_printer(12, “I hate going to school!”);



The Results

Race condition: The situation where several processes access – and 
manipulate shared data concurrently. The result critically depends on timing of 
these processes, which are “racing”.

Job from user --- 59 ---
What a beautiful day!
-------------------------------
Job from user --- 12 ---
I hate going to school!
-------------------------------

What I expected!

Job from user --- 59 ---
Job from user --- 12 ---
What I hate a beautiful day!
-------------------------------
going to school!
-------------------------------

The fact



Mutual Exclusion

This routine is neither Thread-Safe nor Reentrant!

This piece of code has to be executed Atomically,
in Mutual Exclusion! These three lines
constitute a Critical Section.



mutex

A mutex is a synchronization primitive available for 
processes and threads. It has two primitives: 

lock(): allows a thread to acquire the mutex, ensuring 
that only one flow of execution exists inside the critical 
section. If a second thread calls lock(), it becomes 
blocked.
unlock(): signals that a thread is leaving the critical 
section. If there are other threads waiting for the critical 
section, one of them is allowed to run: it becomes ready.

Only one thread/process can be in here!



A mutex can be called a
Binary Semaphore



inventor of semaphore: Edsger Dijkstra

• Inventor of the semaphore, one of the key contributions for 
modern operating systems; developed the THE operating 
system
– Used in all operating systems today.

• Created the Dijkstra algorithm for finding the shortest path in a 
graph
– Used in all computer networks today (e.g. in OSPF routing).

• Wrote “A Case against the GO TO Statement”, and was one of 
the fathers of Algol-60
– Which introduced the revolution of structured programming.

 Semaphores are used to count things!
 Blocked Processes in a semaphore do not consume resources (CPU)!

 Semaphores are used to count things!
 Blocked Processes in a semaphore do not consume resources (CPU)!



semaphore

• A semaphore is a synchronization object
– Controlled access to a counter (a value)

– Two operations are supported: wait() and post()

• wait()
– If the semaphore is positive, decrement it and continue

– If not, block the calling thread (process)

• post()
– Increment the semaphore value

– If there was any (process) thread blocked due to the 
semaphore, unblock one of them.

 Semaphores are used to count things!
 Blocked Processes in a semaphore do not consume resources (CPU)!

 Semaphores are used to count things!
 Blocked Processes in a semaphore do not consume resources (CPU)!
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Semaphores in Reality

• UNIX System V Semaphores 
– Works with semaphore arrays

– semget(), semctl(), semop()

• POSIX Semaphores
– sem_init(), sem_close(), sem_post(), sem_wait()

– Also work with threads

• Java: Typically uses “monitors”, now it has:
– java.util.concurrent.Semaphore

• .NET:Typically uses “monitors”, but it has:

– System.Threading.Semaphore



Semaphores are correct and convenient, 
but…

• Mistakes!
– easy to forget a wait() or post()…

– easy to do wait() and post() in different semaphores on 
opposite order

– difficult to ensure correctness when several semaphores are 
involved

• Alternatives: Monitor
– an abstraction where only one thread or process can 

be executing at a time.
• Normally, it has associated data
• When inside a monitor, a thread executes in mutual 

exclusion

– UNIX: conditional variables



Producer/Consumer Problem

• A producer puts elements on a finite buffer. If the buffer 
is full, it blocks until there’s space. 

• The consumer retrieves elements. If the buffer is 
empty, it blocks until something comes along.

• We will need three semaphores
– count the empty slots

– count the full slots

– provide for mutual exclusion to the shared buffer

Producer Consumer



Producer/Consumer: Basic Implementation

Producer Consumer

empty full

read_pos write_pos

put_element(e) {
  sem_wait(empty);
  sem_wait(mutex);
  buf[write_pos] = e;
  write_pos = (write_pos+1) % N;
  sem_post(mutex);
  sem_post(full);
}

mutex

get_element() {
  sem_wait(full);
  sem_wait(mutex);
  e = buf[read_pos];
  read_pos = (read_pos+1) % N;
  sem_post(mutex);
  sem_post(empty);
  return e;
}



Readers/Writers Problem

• Writer processes have to update shared data. 
• Reader processes have to check the values of the 

data. The should all be able to read at the same time.

Writer

Reader

Shared Data

Writer

Reader

Reader

 Why is this different from the Producer/Consumer problem?
 Why not use a simple mutex?

 Why is this different from the Producer/Consumer problem?
 Why not use a simple mutex?



Readers/Writers Problem

• We will need two semaphores:
– stop the writers and guarantying mutual exclusion when a 

writer is updating the data

– protect mutual exclusion of a shared variable that counts 
readers

mutex

n_readers

stop_writers

Writer

Writer

Reader

Reader

Reader



Readers/Writers Algorithm (priority to Readers)

mutex

n_readers

stop_writers

Writer

Writer

Reader Reader

write(e) {
  sem_wait(stop_writers);
  buffer = e;
  sem_post(stop_writers);
}

read() {
  sem_wait(mutex);
  ++n_readers;
  if (n_readers == 1)
    sem_wait(stop_writers);
  sem_post(mutex);
 
  e = buffer;

  sem_wait(mutex);
  --n_readers;
  if (n_readers == 0)
    sem_post(stop_writers);
  sem_post(mutex);
  return e;
}



Considerations

• The previous algorithm gives priority to readers
– Not always what you want to do

• There’s a different version that gives priority to writers
• Why should I care?

– This algorithm is the essential of all database systems! 
Concurrent reads of data; single update.

– One bank agency deposits some money in an account; at the 
same time, all over the country, many agencies can be 
reading it

– You are booking a flight. Although someone in England in 
also booking a flight, you and thousands of people can still 
see what are the available places in the place.



Buffer Cleaner Problem

• A buffer can hold a maximum of N elements. When it is 
full, it should be immediately emptied. While the buffer 
is being emptied, no thread can put things into it.

Producer

Cleaner
Producer

Producer



Synchronization: Basic Rules(1)

• Never Interlock waits!
– Locks should always be taken in the same order in all processes

– Locks should be released in the reverse order they have been taken

• One way to assure that you always take locks in the same order is to create 
a lock hierarchy. I.e. associate a number to each lock using a table and 
always lock in increasing order using that table as reference (index).

sem_wait(A)
sem_wait(B)

// Critical 
Section

sem_post(B)
sem_post(A)

sem_wait(B)
sem_wait(A)

// Critical 
Section

sem_post(A)
sem_post(B)

Deadlock!



Synchronization: Basic Rules(2)
• Sometimes it is not possible to know what order to take when locking (or 

using semaphores)
– Example: you are using two resources owned by the operating system. 

They are controlled by locks. You cannot be sure if another application is 
not using exactly the same resources and locking in reverse order.

• In that case, use pthread_mutex_trylock() or sem_trywait() and back off if 
you are unsuccessful. 
– Allow the system to make progress and not deadlock!



Synchronization: Basic Rules(3)

• Mutexes are used for implementing mutual exclusion, 
not for signaling across threads!!!
– Only the thread that has locked a mutex can unlock 

it. Not doing so will probably result in a core dump!

• To signal across threads use semaphores!

lock(&m)

unlock(&m)

lock(&m)

unlock(&m)

CORRECT!

lock(&m)

unlock(&m)

A B A B

(in mutual exclusion)

(in mutual 
exclusion)

(blocked)

INCORRECT!



Important Concepts

• Deadlock
– When two or more processes are unable to make progress 

being blocked waiting for each other

• Livelock
– When two or more processes are alive and working but are 

unable to make progress 

• Starvation
– When a process is not being able to access resources that 

its needs to make progress



Thread Priority

• The scheduling problem applies to sleep queues as 
well.

• Which thread should get a mutex next?  Which thread 
should wakeup on a signal?

• Should priority matter?
• What if a high-priority thread is waiting for a mutex held 

by a low-priority thread?  This is called priority 
inversion.



Mars PathFinder Problem:
Priority Inversion



Mars Pathfinder
• Mission

– Demonstrate new landing techniques: parachute and airbags

– Take pictures

– Analyze soil samples

– Demonstrate mobile robot technology: Sojourner

• Major success on all fronts
– Returned 2.3 billion bits of information

– 16,500 images from the Lander

– 550 images from the Rover

– 15 chemical analyses of rocks & soil

– Lots of weather data

– Both Lander and Rover outlived their design life
Sojourner Rover

Operators: NASA and JPL 
(Jet Propulsion Laboratory )

Low-cost (~$150 million) 
planetary discovery mission



Mars Pathfinder
• Mars Pathfinder was originally designed as a

technology demonstration of a way to deliver an 
instrumented lander and a free-ranging robotic 
rover to the surface of the red planet. 

• Due to limited funds, Pathfinder’s development 
had to be dramatically different from the way in 
which previous spacecraft had been developed. 

• Instead of the traditional 8- to 10-year schedule 
and $1-billion-plus budget, Pathfinder was 
developed in three years for less than $150 
million
= the cost of some Hollywood movies!



Pictures taken from an early Mars rover



Mars Pathfinder Timeline

• November 16, 1996
– Russian Mars '96 orbiter/landers launched.

• November 17, 1996 
– Mars '96 fails to achieve insertion into Mars cruise trajectory 

and re-enters the Earth's atmosphere.

• December 4, 1996
– Mars Pathfinder launched.

• July 4, 1997
– Mars Pathfinder lands on Mars and begins a successful 

mission.

• September 27, 1997
– last successful data transmission from Mars Pathfinder



New York Times: July 15, 1997
Mary Beth Murrill, a spokeswoman for NASA's Jet 
Propulsion Laboratory, said transmission of the 
panoramic shot took “a lot of processing power.” 
She likened the data overload to what happens 
with a personal computer “when we ask it to do 
too many things at once.”
   The project manager, Brian Muirhead, said that 
to prevent a recurrence, controllers would 
schedule activities one after another, instead of at 
the same time. It was the second time the 
Pathfinder's computer had reset itself while 
trying to carry out several activities at once. 
   In response, controllers reprogrammed the 
computer over the weekend to slow down the rate 
of activities and avoid another reset. But today, 
about an hour into a two-hour transmission 
session, it happened again.



Pathfinder Configurations

• Spacecraft ran IBM RS6000 processor and WindRiver's 
VxWorks RTOS
– 20 MIPS 128 MB of DRAM

for storage of flight software and engineering and science data, including images 
and rover information.

– 6 MB ROM

stored flight software and time-critical data.

• Hard real-time OS with concurrent execution of thread
– Threads have priorities and are preemptible

• Tasks on Pathfinder were executed as threads with priorities 
– that were assigned reflecting the relative urgency of tasks.

• Pathfinder contained an "information bus”
– a shared memory area used for passing information between 

different components of the spacecraft. 





Rover Sojourner

• The rover, capable of autonomous navigation and performance 
of tasks, communicated with Earth via the lander. 

• Sojourner’s control system was built around an Intel 80C85, 
with a computing speed of 0.1 MIPS and 500 KB of RAM.
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which controls both the 1553 bus and the devices attached to it.

Mil 1553 bus



Pathfinder Configurations

CPU
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.

Vme bus
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(radio, camera etc.)
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the equipment

Lander part of 
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Pathfinder used VxWorks RTOS

• Threads for the 1553 bus for data collection, 
scheduled on every 1/8th sec cycle.

• 3 periodic tasks
– Task 1 – Information Bus Thread: Bus Manager

high frequency, high priority

– Task 2 – Communication Thread

medium frequency / priority, high execution time

– Task 3 – Weather Thread: Geological Data Gatherer

low frequency, low priority

• Each checks if the other executed and completed in 
the previous cycle

– If the check fails, this is a violation of a hard real-time 
guarantee and the system is reset



NASA Pathfinder

• fault-tolerance
– a watchdog timer was used to reset the system in the event 

that the computer / software locks up

– essential design feature (no going to Mars to reboot)

– “watched” for hang ups on the highest priority task

• inter-task communication 
– a shared resource (memory) was used to pass data from the 

data gatherer (task 3) to the communicator (task 2) via the 
bus manager (task 1).



Pathfinder Problem

• Within a few days of landing, when Pathfinder started gathering 
meteorological data, spacecraft began experiencing total 
system resets

• This resulted in loss of data collected during each cycle
• JPL engineers had exact replica of the spacecraft in their lab
• They turned on the tracing feature of VxWorks

– All system events such as context switches, uses of 
synchronization objects, and interrupts traced.

– Tracing disabled on the actual spacecraft because 
generates too much data volume.

• After 18 hours of execution, early next morning when all but one 
engineer had gone home, the symptom was reproduced.



Pathfinder Problem

• Most of the time this combination worked fine
• However, with the following scenario:

– Data gathering occurs, grab the bus

– Shared memory buffer full, retrieval to private memory

• This is blocked because of the bus mutex
– Period communication task is issued

• This is preempted because of lower priority
– Data gathering task takes its time

– Retrieval task time out due to watchdog timer

• System reset!



VxWorks RTOS

• Multiple tasks, each with an associated priority
– Higher priority tasks get to run before lower-priority tasks

• Information bus – shared memory area used by various tasks
– Thread must obtain mutex to write data to the info bus – a monitor

Information Bus

Mutex

Weather
Data Thread

Communication
Thread

Information Bus
Thread

Obtain mutex; write 
data

Wait for mutex to read 
data



VxWorks RTOS

• Multiple tasks, each with an associated priority
– Higher priority tasks get to run before lower-priority tasks

• Information bus – shared memory area used by various tasks
– Thread must obtain mutex to write data to the info bus – a monitor

Information Bus

Mutex

Weather
Data Thread

Communication
Thread

Information Bus
Thread

Free 
mutex



VxWorks RTOS

• Multiple tasks, each with an associated priority
– Higher priority tasks get to run before lower-priority tasks

• Information bus – shared memory area used by various tasks
– Thread must obtain mutex to write data to the info bus – a monitor

Information Bus

Mutex

Weather
Data Thread

Communication
Thread

Information Bus
Thread

Lock mutex 
and read data



Priority Inversion

Information Bus

Mutex

Weather
Data Thread

Communication
Thread

Information Bus
Thread

Low priority Med Priority High priority



Priority Inversion

Information Bus

Mutex

Weather
Data Thread

Communication
Thread

Information Bus
Thread

Low priority Med Priority High priority

Interrupt!
Schedule comm thread ... long running operation



Priority Inversion

Information Bus

Mutex

• What happens when threads have different priorities?

• Comm thread runs for a long time

• Comm thread has higher priority than weather data thread

• But ... the high priority info bus thread is stuck waiting!

• This is called priority inversion

Weather
Data Thread

Communication
Thread

Information Bus
Thread

Low priority Med Priority High priority



Pathfinder incident: Priority Inversion

Classical priority inversion problem due to shared system bus!

task 1 (high)

task 2 (med)

task 3 (low)

task 3 locks S1

task 1 attempts to  
lock S1 (blocked)

task 3 unlocks S1 
(task 1   unblocked) 
task 1 locks S1

task 1 unlocks S1

CS1

ncsp

CS1

ncsp

CS1

CS1

Z3,1

Z1,1
• tasks 1 and 3 share a resource (S1)

• prio(task1) >prio(task2) >prio(task3) 

• Task 2 can run for any amount of time… 
it blocks Task 3 from finishing and 
unlocking resource  needed by task 1.



Priority Inversion

Unbounded Priority Inversion



Variant: Air transportation

• Priority(my_plane) < Priority(obama_s_plane)
• I arrived at the airport first and called sem_wait(&runway_mutex). 
• Obama arrived at the airport after me and called 

sem_wait(&runway_mutex).
• My plane stopped working.
• Obama now has to wait for the engineers to fix my plane and for my 

plane to take off.



Look into deeper

• VxWorks 5.x
• 2 tasks to control the 1553 bus and the attached 

instruments. 
– bc_sched task (called the bus scheduler)

a task controlled the setup of transactions on the 
1553 bus

– bc_dist task (for distribution) task
also referred as the “communication task”

• handles the collection of the transaction results i.e. the 
data.



53

Marsrobot general communication pattern

time

t1 - bus hardware starts via hardware control on the 8 Hz boundary. 
The transactions for the this cycle had been set up by the previous execution
of the bc_sched task.

t2 - 1553 traffic is complete and the bc_dist task is awakened.

t3 - bc_dist task has completed all of the data distribution

t4 - bc_sched task is awakened to setup transactions for the next cycle

t5 - bc_sched activity is complete

t1 t2 t1t3 t4 t5

125 ms (8 Hz)

Spacecraft functions
LOW priority

bc-dist
MEDIUM priority

bc-sched
HIGH priority

Mil 1553 transaction

Science functions (ASI/MET, …)
LOWEST priority

Check order!
bc-dist
 

bc-sched



1553 communication

• Powered 1553 devices deliver data. 
• Tasks in the system that access the information 

collected over the 1553 do so via a 
double buffered shared memory mechanism into 
which the bc_dist task places the latest data.

• The exception to this is the ASI/MET task which is 
delivered its information via an interprocess 
communication mechanism (IPC). The IPC mechanism 
uses the VxWorks pipe() facility.
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Dedicated systems' tasking model

P3

Thread

P4

started
thread

Shared
data

D Mailbox

D4 message queue

data usage



bc-dist

bc-sched
Spacecraft

function
taks 1

Spacecraft
function

tasks

Science
function
task 1

Science
function

tasks

Shared
data

ASI/MET

task

Shared
data

Shared
data
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data
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data
setup

File

Descriptor

Table System_mutex



IPC Mechanism

• Tasks wait on one or more IPC "queues" for messages 
to arrive using the VxWorks select() mechanism to wait 
for message arrival.

• Multiple queues are used when both high and lower 
priority messages are required. 

• Most of the IPC traffic in the system is not for the 
delivery of real-time data. The exception to this is the 
use of the IPC mechanism with the ASI/MET task. 

• The cause of the reset on Mars was in the use and 
configuration of the IPC mechanism.



VxWorks select()

• Pending on multiple file descriptiors: 
this routine permits a task to pend until one of a set of file 
descriptors becomes available

• Wait for multiple I/O devices (task level and driver level)
• file descriptors

pReadFds, pWriteFds

• Bits set in pReadFds will cause select() to pend until data 
becomes available on 
any of the corresponding file descriptors.

• Bits set in pWriteFds will cause select() to pend until 
any of the corresponding file descriptors
becomes available.



Marsrobot

Shared ressource for
Communication
Using select()

Thread AThread A

Thread BThread B

Thread CThread C

Low priority thread

Lowest priority sporadic
meteo thread

ASI/MET

Middle priority long lasting 
Comm thread

bc_dist
Different I/O

channels

System_mutex



The problem, again

• Priority inversion occurs when a thread of low priority 
blocks the execution of threads of higher priority. 

• Two flavours:
– bounded priority inversion

(common & relatively harmless)

– unbounded priority inversion
(insidious & potentially disastrous) 



Bounded Priority Inversion

• Suppose a high priority thread becomes blocked 
waiting for an event to happen. A low priority thread 
then starts to run and in doing so obtains (i.e locks) a 
mutex for a shared resource. While the mutex is locked 
by the low priority thread, the event occurs waking up 
the high priority thread.

• Inversion takes place when the high priority thread tries 
to lock the mutex held by the low priority thread. In 
effect the high priority thread must wait for the low 
priority thread to finish.

• It is called bounded inversion since the inversion is 
limited by the duration of the critical section. 



ISR A

HIGH:
TASK A (40)

LOW
TASK C (30)

Bounded priority inversion

time

Lock
MUTEX (m)

Lock
MUTEX (m)

run

blocked

ready

UnLock
MUTEX (m)
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d 
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Unbounded Priority Inversion

• Here the high level thread can be blocked indefinitely 
by a medium priority thread.

• The medium level thread running prevents the low 
priority thread from releasing the lock.

• All that is required for this to happen is that while the 
low level thread has locked the mutex, the medium 
level thread becomes unblocked, preempting the low 
level thread.

• The medium level thread then runs indefinitely. 



ISR A

HIGH:
TASK A (40)

LOW
TASK C (30)

Unbounded priority inversion

time

Lock
MUTEX (m)

Lock
MUTEX (m)

run

blocked

ready

MIDDLE:
 TASK B (35)

ISR B

Unbounded inversion time



Pathfinder Failure

• The failure was identified by the spacecraft as a failure 
of the bc_dist task to complete its execution before the 
bc_sched task started. 

• The reaction to this by the spacecraft was to reset the 
computer. 

• This reset reinitializes all of the hardware and 
software. It also terminates the execution of the current 
ground commanded activities. No science or 
engineering data is lost that has already been collected 
(the data in RAM is recovered so long as power is not 
lost).

• The remainder of the activities for that day were not 
accomplished until the next day.
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Comm thread
pre-emption
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Bus thread
bc_sched

LOW
Tasks

Marsrobot priority inversion

time

Lock
SystemMUTEX (m)

run
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MIDDLE
Comm thread
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Un-Lock
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Priority Inversion

• The higher priority bc_dist task was blocked by the much lower 
priority ASI/MET task that was holding a shared resource. 

• The ASI/MET task had acquired this resource and then been 
preempted by several of the medium priority tasks.

• When the bc_sched task was activated, to setup the 
transactions for the next 1553 bus cycle, it detected that the 
bc_dist task had not completed its execution.

• The resource that caused this problem was a mutex (here called 
system_mutex) used within the select() mechanism to control 
access to the list of file descriptors that the select() mechanism 
was to wait on.



Priority Inversion

• The select() mechanism creates a system_mutex to protect the "wait list" of 
file descriptors for those devices which support select(). 

• The VxWorks pipe mechanism is such a device and the IPC mechanism 
used is based on using pipes. 

• The ASI/MET task had called select(), which had called pipeIoctl(), which 
had called selNodeAdd(), which was in the process of giving the 
system_mutex.

• The ASI/ MET task was preempted and semGive() was not completed. 

• Several medium priority tasks ran until the bc_dist task was activated. 

• The bc_dist task attempted to send the newest ASI/MET data via the IPC 
mechanism which called pipeWrite(). 

• pipeWrite() blocked, taking the system_mutex. More of the medium priority 
tasks ran, still not allowing the ASI/MET task to run, until the bc_sched task 
was awakened. 

• At that point, the bc_sched task determined that the bc_dist task had not 
completed its cycle (a hard deadline in the system) and declared the error 
that initiated the reset.



Mars PathFinder Solutions



As suspected, the Pathfinder computer, struggling 
with several activities at once, reset itself each time 
it could not carry out low-priority tasks in the 
allotted time. A reset is a safety feature similar to 
hitting a reset button on a home computer. 
   The low-priority task that kept tripping it up was 
the transfer of temperature and wind 
measurements from sensors to an electronics 
board and then into the computer. The solution is to 
raise the task's priority through some 
reprogramming, Mr. Muirhead said. 



What is the Fix?

• Problem with priority inversion:
– A high priority thread is stuck waiting for a low priority thread 

to finish its work

– In this case, the (medium priority) thread was holding up the 
low-priority thread

• General solution: Priority inheritance
– If waiting for a low priority thread, allow that thread to inherit 

the higher priority

– High priority thread “donates” its priority to the low priority 
thread

• Why can it fix the problem?
– Medium priority comm task cannot preempt weather task

– Weather task inherits high priority while it is being waited on



What was the problem fixed?

• JPL had a replica of the Pathfinder system on the ground
– Special tracing mode maintrains logs of all interesting system events

• e.g., context switches, mutex lock/unlock, interrupts

– After much testing were able to replicate the problem in the lab

• VxWorks mutex objects have an optional priority inheritance flag
– Engineers were able to upload a patch to set this flag on the info bus 

mutex

– After the fix, no more system resets occurred

• Lessons: 
– Automatically reset system to “known good” state if things run amuck

• Far better than hanging or crashing

– Ability to trace execution of complex multithreaded code is useful

– Think through all possible thread interactions carefully!!



Debug the problem

• On replica on earth

• Total Tracing on
– Context switches

– Uses of synchronisation objects

– Interrupts

• Took time to reproduce the error
• Trace analyses ==>priority inversion problem

Ty

Hardware

A
S

I/M
E

T

Tx

VxWorks 5.x

Physical I/O (BIOS)
TICKER
routine

TRACE

b
c
_d

ist

b
c
_sc

h
e
d



Bug Detection

• The software that flies on Mars Pathfinder has several 
debug features within it that are used in the lab but are 
not used on the flight spacecraft (not used because 
some of them produce more information than we can 
send back to Earth).

• These features remain in the software by design 
because JPL strongly believes in the
"test what you fly and fly what you test" 
philosophy.



Deadlock

• With priority inversion, eventually the system makes progress
– e.g., Comm thread eventually finishes and rest of system proceeds

– Pathfinder watchdog timer reset the system too quickly!

• A far more serious situation is deadlock

– Two (or more) threads waiting for each other

– None of the deadlocked threads ever make progress

Mutex 1

Thread 1

Thread 2Mutex 2

holds

holds

waits for

waits for



Deadlock Definition

• Two kinds of resources:
– Preemptible: Can take away from a thread

• e.g., the CPU

– Non-preemptible: Can't take away from a thread

• e.g., mutex, lock, virtual memory region, etc.

• Why isn't it safe to forcibly take a lock away from a thread
• Starvation

– A thread never makes progress because other threads are using a 
resource it needs

• Deadlock
– A circular waiting for resources

• Thread A waits for Thread B

• Thread B waits for Thread A

• Starvation ≠ Deadlock



Conditions for Deadlock

• Limited access to a resource
– Means some threads will have to wait to access a shared resource

• No preemption
– Means resource cannot be forcibly taken away from a thread

• Multiple independent requests
– Means a thread can wait for some resources while holding others

• Circular dependency graph
– Just as in previous example

• Without all of these conditions, can't have deadlock!
– Suggests several ways to get rid of deadlock



Get rid of deadlock

• Unlimited access to a resource?
– Requires that all resources allow arbitrary number of concurrent 

accesses

• Probably not too feasible!

• Always allow preemption?
– Is it safe to let multiple threads into a critical section?

• No multiple independent requests?
– This might work!

– Require that threads grab all resources they need before using any of 
them!

• Not allowed to wait while holding some resources!

• No circular chains of requests?
– This might work too!

– Require threads to grab resources in some predefined order!



Resource Access Protocols



Priority Inversion

Priority Inheritance



Resource Access Protocols

• Critical sections: sections of code at which
exclusive access to some resource must be 
guaranteed.

• Can be guaranteed with semaphores S.

P(S)

V(S)

P(S)

V(S)

P(S) checks semaphore to see if resource 
is available 
and if yes, sets S to „used“. 
Uninterruptable operations!
If no, calling task has to wait.

V(S): sets S to „unused“ and starts 
sleeping task (if any).

P(S) checks semaphore to see if resource 
is available 
and if yes, sets S to „used“. 
Uninterruptable operations!
If no, calling task has to wait.

V(S): sets S to „unused“ and starts 
sleeping task (if any).

Exclusive
access
to resource
guarded by
S

Task 1 Task 2



Hardware Issues



Case study: Bounded-Buffer

 Besides putting the CPU to 100% without doing anything useful
 Why is it wrong?

 Besides putting the CPU to 100% without doing anything useful
 Why is it wrong?



Possible problem: ++nElements

• The compiler may generate the following code:

• Depending on the interleaving of putItem() and 
getItem() the final value can be -1, correct, or +1 (!)

LD R1, @nElements
ADD R1, R1, 1
SW @nElements, R1



Possible problem: ++nElements

• Possible solution: disable the interrupts

• Works on simple processors with non-preemptive kernels. 
• But, for multi-core, disabling interrupts in one processor does 

not prevent the other processor from modifying the variable!
– Non-preemptive kernels: A process executing in kernel 

mode cannot be suspended. e.g. Windows XP, Traditional UNIX

– Preemptive Kernels: While executing in kernel mode a 
process can be suspended. e.g. Linux 2.6 series and Solaris 10.

CLI
LD R1, @nElements
ADD R1, R1, #1
SW @nElements, R1
STI



Possible problem: ++nElements

• Even in architectures providing an atomic INC variable:

It may not work!
→ the need for atomic locks

• The compiler may optimize a tight loop putting the variable in a 
register. In another process, the variable may be being written to 
memory, but it’s not visible from the first process. This is 
especially relevant in multiprocessor machines.

INC @nElements

…
while (nElements == 0)
  ;
…

…
++nElements;
…

Process A Process B

a “smart compiler” has put 
nElements in a register

nElements is being updated
in memory (or a different 
register)



Solving critical section problems

• Mutual Exclusion
– Only one process can be executing in the critical 

section at a time

• Progress
– If on process is in the critical section only the 

processes that are either at the entry or exit 
sections can be involved in choosing the next 
process to enter. The decision must be reached 
in bounded time.

• Bounded Waiting
– No process will starve indefinitely while trying to 

enter a critical section in detriment of other 
processes which repeatedly enter it.



Solutions for critical section problems

• Software Algorithms: Peterson's Algorithm
• Hardware

– Simple “old” single processor machines: Disable Interrupts

• Even in modern single processor machines may not work
– TestAndSet and Swap instructions



TestAndSet

• Instruction that atomically, implemented in hardware, returns the 
value of a target variable, setting it to TRUE.

• Solution for mutual exclusion:



Swap

• Instruction that atomically swaps the contents of two variables.

• Solution for mutual exclusion:



Hardware Support

• two previous algorithms:
– Solve the mutual exclusion problem and the progress condition

– Do not satisfy the bounded waiting condition (why??)

– Slightly more sophisticated algorithms exist that do so

• The implementations shown before are called spin-locks
– In general they should be avoided 

– Nevertheless, in controlled ways, they are the basis for implementing true 
mutexes and semaphores at the operating system level

– This is especially relevant on preemptive kernels running on 
multiprocessors. (Somehow, the kernel must, in a controlled way, allow 
to signal across processors in mutual exclusion!)

– In some high performance applications, sometimes programmers 
spin-lock for a few moments before blocking on a true lock/semaphore. In 
this way they are able to prevent a heavy process switch if the resource 
becomes available in a very short time. 



Linux 2.6+

• Linux 2.6 is a fully preemptive kernel. I.e. processes 
can be suspended while executing in kernel mode.

• Basic underlying locking mechanism depends on 
whether an SMP or non-SMP kernel is being used.

• Spin-locks are only used for very short durations.
– Longer durations imply passing control to a true 

lock/semaphore, releasing the processor(s) involved.

single processor multi-processor

Disable kernel preemption Acquire spin-lock

Enable kernel preemption Release spin-lock



Reference

• Mars pathfinder failure, Martin TIMMERMAN
• Operating Systems, Paulo Marques, Departamento de 
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• Synchronization Problems and Deadlock, Matt Welsh
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http://research.microsoft.com/~mbj/Mars_Pathfinder/
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