
Priority Inversion on Mars

Jim Huang <jserv@0xlab.org>

Developer, 0xlab

Mar 12, 2013 / NCKU CSIE

Agenda

• Review Operating System Concepts
• Mars Pathfinder:

– Problem: Priority Inversion
– Solutions

• Resource Access Protocols
• Implementation Considerations

Review Operating System Concepts

Consider the Function Calls

Process A

send_to_printer(59, “What a beautiful day!”);

Process B

send_to_printer(12, “I hate going to school!”);

The Results

Race condition: The situation where several processes access – and
manipulate shared data concurrently. The result critically depends on timing of
these processes, which are “racing”.

Job from user --- 59 ---
What a beautiful day!

Job from user --- 12 ---
I hate going to school!

What I expected!

Job from user --- 59 ---
Job from user --- 12 ---
What I hate a beautiful day!

going to school!

The fact

Mutual Exclusion

This routine is neither Thread-Safe nor Reentrant!

This piece of code has to be executed Atomically,
in Mutual Exclusion! These three lines
constitute a Critical Section.

mutex

A mutex is a synchronization primitive available for
processes and threads. It has two primitives:

lock(): allows a thread to acquire the mutex, ensuring
that only one flow of execution exists inside the critical
section. If a second thread calls lock(), it becomes
blocked.
unlock(): signals that a thread is leaving the critical
section. If there are other threads waiting for the critical
section, one of them is allowed to run: it becomes ready.

Only one thread/process can be in here!

A mutex can be called a
Binary Semaphore

inventor of semaphore: Edsger Dijkstra

• Inventor of the semaphore, one of the key contributions for
modern operating systems; developed the THE operating
system
– Used in all operating systems today.

• Created the Dijkstra algorithm for finding the shortest path in a
graph
– Used in all computer networks today (e.g. in OSPF routing).

• Wrote “A Case against the GO TO Statement”, and was one of
the fathers of Algol-60
– Which introduced the revolution of structured programming.

 Semaphores are used to count things!
 Blocked Processes in a semaphore do not consume resources (CPU)!

 Semaphores are used to count things!
 Blocked Processes in a semaphore do not consume resources (CPU)!

semaphore

• A semaphore is a synchronization object
– Controlled access to a counter (a value)

– Two operations are supported: wait() and post()

• wait()
– If the semaphore is positive, decrement it and continue

– If not, block the calling thread (process)

• post()
– Increment the semaphore value

– If there was any (process) thread blocked due to the
semaphore, unblock one of them.

 Semaphores are used to count things!
 Blocked Processes in a semaphore do not consume resources (CPU)!

 Semaphores are used to count things!
 Blocked Processes in a semaphore do not consume resources (CPU)!

semaphore

5

P1

value

P6 P3 NULLblocked
process

list

“A semaphore”

Semaphores in Reality

• UNIX System V Semaphores
– Works with semaphore arrays

– semget(), semctl(), semop()

• POSIX Semaphores
– sem_init(), sem_close(), sem_post(), sem_wait()

– Also work with threads

• Java: Typically uses “monitors”, now it has:
– java.util.concurrent.Semaphore

• .NET:Typically uses “monitors”, but it has:

– System.Threading.Semaphore

Semaphores are correct and convenient,
but…

• Mistakes!
– easy to forget a wait() or post()…

– easy to do wait() and post() in different semaphores on
opposite order

– difficult to ensure correctness when several semaphores are
involved

• Alternatives: Monitor
– an abstraction where only one thread or process can

be executing at a time.
• Normally, it has associated data
• When inside a monitor, a thread executes in mutual

exclusion

– UNIX: conditional variables

Producer/Consumer Problem

• A producer puts elements on a finite buffer. If the buffer
is full, it blocks until there’s space.

• The consumer retrieves elements. If the buffer is
empty, it blocks until something comes along.

• We will need three semaphores
– count the empty slots

– count the full slots

– provide for mutual exclusion to the shared buffer

Producer Consumer

Producer/Consumer: Basic Implementation

Producer Consumer

empty full

read_pos write_pos

put_element(e) {
 sem_wait(empty);
 sem_wait(mutex);
 buf[write_pos] = e;
 write_pos = (write_pos+1) % N;
 sem_post(mutex);
 sem_post(full);
}

mutex

get_element() {
 sem_wait(full);
 sem_wait(mutex);
 e = buf[read_pos];
 read_pos = (read_pos+1) % N;
 sem_post(mutex);
 sem_post(empty);
 return e;
}

Readers/Writers Problem

• Writer processes have to update shared data.
• Reader processes have to check the values of the

data. The should all be able to read at the same time.

Writer

Reader

Shared Data

Writer

Reader

Reader

 Why is this different from the Producer/Consumer problem?
 Why not use a simple mutex?

 Why is this different from the Producer/Consumer problem?
 Why not use a simple mutex?

Readers/Writers Problem

• We will need two semaphores:
– stop the writers and guarantying mutual exclusion when a

writer is updating the data

– protect mutual exclusion of a shared variable that counts
readers

mutex

n_readers

stop_writers

Writer

Writer

Reader

Reader

Reader

Readers/Writers Algorithm (priority to Readers)

mutex

n_readers

stop_writers

Writer

Writer

Reader Reader

write(e) {
 sem_wait(stop_writers);
 buffer = e;
 sem_post(stop_writers);
}

read() {
 sem_wait(mutex);
 ++n_readers;
 if (n_readers == 1)
 sem_wait(stop_writers);
 sem_post(mutex);

 e = buffer;

 sem_wait(mutex);
 --n_readers;
 if (n_readers == 0)
 sem_post(stop_writers);
 sem_post(mutex);
 return e;
}

Considerations

• The previous algorithm gives priority to readers
– Not always what you want to do

• There’s a different version that gives priority to writers
• Why should I care?

– This algorithm is the essential of all database systems!
Concurrent reads of data; single update.

– One bank agency deposits some money in an account; at the
same time, all over the country, many agencies can be
reading it

– You are booking a flight. Although someone in England in
also booking a flight, you and thousands of people can still
see what are the available places in the place.

Buffer Cleaner Problem

• A buffer can hold a maximum of N elements. When it is
full, it should be immediately emptied. While the buffer
is being emptied, no thread can put things into it.

Producer

Cleaner
Producer

Producer

Synchronization: Basic Rules(1)

• Never Interlock waits!
– Locks should always be taken in the same order in all processes

– Locks should be released in the reverse order they have been taken

• One way to assure that you always take locks in the same order is to create
a lock hierarchy. I.e. associate a number to each lock using a table and
always lock in increasing order using that table as reference (index).

sem_wait(A)
sem_wait(B)

// Critical
Section

sem_post(B)
sem_post(A)

sem_wait(B)
sem_wait(A)

// Critical
Section

sem_post(A)
sem_post(B)

Deadlock!

Synchronization: Basic Rules(2)
• Sometimes it is not possible to know what order to take when locking (or

using semaphores)
– Example: you are using two resources owned by the operating system.

They are controlled by locks. You cannot be sure if another application is
not using exactly the same resources and locking in reverse order.

• In that case, use pthread_mutex_trylock() or sem_trywait() and back off if
you are unsuccessful.
– Allow the system to make progress and not deadlock!

Synchronization: Basic Rules(3)

• Mutexes are used for implementing mutual exclusion,
not for signaling across threads!!!
– Only the thread that has locked a mutex can unlock

it. Not doing so will probably result in a core dump!

• To signal across threads use semaphores!

lock(&m)

unlock(&m)

lock(&m)

unlock(&m)

CORRECT!

lock(&m)

unlock(&m)

A B A B

(in mutual exclusion)

(in mutual
exclusion)

(blocked)

INCORRECT!

Important Concepts

• Deadlock
– When two or more processes are unable to make progress

being blocked waiting for each other

• Livelock
– When two or more processes are alive and working but are

unable to make progress

• Starvation
– When a process is not being able to access resources that

its needs to make progress

Thread Priority

• The scheduling problem applies to sleep queues as
well.

• Which thread should get a mutex next? Which thread
should wakeup on a signal?

• Should priority matter?
• What if a high-priority thread is waiting for a mutex held

by a low-priority thread? This is called priority
inversion.

Mars PathFinder Problem:
Priority Inversion

Mars Pathfinder
• Mission

– Demonstrate new landing techniques: parachute and airbags

– Take pictures

– Analyze soil samples

– Demonstrate mobile robot technology: Sojourner

• Major success on all fronts
– Returned 2.3 billion bits of information

– 16,500 images from the Lander

– 550 images from the Rover

– 15 chemical analyses of rocks & soil

– Lots of weather data

– Both Lander and Rover outlived their design life
Sojourner Rover

Operators: NASA and JPL
(Jet Propulsion Laboratory)

Low-cost (~$150 million)
planetary discovery mission

Mars Pathfinder
• Mars Pathfinder was originally designed as a

technology demonstration of a way to deliver an
instrumented lander and a free-ranging robotic
rover to the surface of the red planet.

• Due to limited funds, Pathfinder’s development
had to be dramatically different from the way in
which previous spacecraft had been developed.

• Instead of the traditional 8- to 10-year schedule
and $1-billion-plus budget, Pathfinder was
developed in three years for less than $150
million
= the cost of some Hollywood movies!

Pictures taken from an early Mars rover

Mars Pathfinder Timeline

• November 16, 1996
– Russian Mars '96 orbiter/landers launched.

• November 17, 1996
– Mars '96 fails to achieve insertion into Mars cruise trajectory

and re-enters the Earth's atmosphere.

• December 4, 1996
– Mars Pathfinder launched.

• July 4, 1997
– Mars Pathfinder lands on Mars and begins a successful

mission.

• September 27, 1997
– last successful data transmission from Mars Pathfinder

New York Times: July 15, 1997
Mary Beth Murrill, a spokeswoman for NASA's Jet
Propulsion Laboratory, said transmission of the
panoramic shot took “a lot of processing power.”
She likened the data overload to what happens
with a personal computer “when we ask it to do
too many things at once.”
 The project manager, Brian Muirhead, said that
to prevent a recurrence, controllers would
schedule activities one after another, instead of at
the same time. It was the second time the
Pathfinder's computer had reset itself while
trying to carry out several activities at once.
 In response, controllers reprogrammed the
computer over the weekend to slow down the rate
of activities and avoid another reset. But today,
about an hour into a two-hour transmission
session, it happened again.

Pathfinder Configurations

• Spacecraft ran IBM RS6000 processor and WindRiver's
VxWorks RTOS
– 20 MIPS 128 MB of DRAM

for storage of flight software and engineering and science data, including images
and rover information.

– 6 MB ROM

stored flight software and time-critical data.

• Hard real-time OS with concurrent execution of thread
– Threads have priorities and are preemptible

• Tasks on Pathfinder were executed as threads with priorities
– that were assigned reflecting the relative urgency of tasks.

• Pathfinder contained an "information bus”
– a shared memory area used for passing information between

different components of the spacecraft.

Rover Sojourner

• The rover, capable of autonomous navigation and performance
of tasks, communicated with Earth via the lander.

• Sojourner’s control system was built around an Intel 80C85,
with a computing speed of 0.1 MIPS and 500 KB of RAM.

VMEbus

CPU

RS6000

R
a
d

io

C
a
m

e
ra

M
il1

5
5
3

Cruise stage

controls

thrusters,
valves,

 a sun sensor,
a star scanner

Lander

interface to
accelerometers,
a radar altimeter,

an instrument for
meteorological science
known as the ASI/MET

Mil1553: specific paradigm:
the software will schedule activity at an 8 Hz rate.

This **feature** dictated the architecture of the software
which controls both the 1553 bus and the devices attached to it.

Mil1553: specific paradigm:
the software will schedule activity at an 8 Hz rate.

This **feature** dictated the architecture of the software
which controls both the 1553 bus and the devices attached to it.

Mil 1553 bus

Pathfinder Configurations

CPU

1553 bus

.

Vme bus

Interface cards
(radio, camera etc.)

Cruise part of
the equipment

Lander part of
the equipment

Pathfinder used VxWorks RTOS

• Threads for the 1553 bus for data collection,
scheduled on every 1/8th sec cycle.

• 3 periodic tasks
– Task 1 – Information Bus Thread: Bus Manager

high frequency, high priority

– Task 2 – Communication Thread

medium frequency / priority, high execution time

– Task 3 – Weather Thread: Geological Data Gatherer

low frequency, low priority

• Each checks if the other executed and completed in
the previous cycle

– If the check fails, this is a violation of a hard real-time
guarantee and the system is reset

NASA Pathfinder

• fault-tolerance
– a watchdog timer was used to reset the system in the event

that the computer / software locks up

– essential design feature (no going to Mars to reboot)

– “watched” for hang ups on the highest priority task

• inter-task communication
– a shared resource (memory) was used to pass data from the

data gatherer (task 3) to the communicator (task 2) via the
bus manager (task 1).

Pathfinder Problem

• Within a few days of landing, when Pathfinder started gathering
meteorological data, spacecraft began experiencing total
system resets

• This resulted in loss of data collected during each cycle
• JPL engineers had exact replica of the spacecraft in their lab
• They turned on the tracing feature of VxWorks

– All system events such as context switches, uses of
synchronization objects, and interrupts traced.

– Tracing disabled on the actual spacecraft because
generates too much data volume.

• After 18 hours of execution, early next morning when all but one
engineer had gone home, the symptom was reproduced.

Pathfinder Problem

• Most of the time this combination worked fine
• However, with the following scenario:

– Data gathering occurs, grab the bus

– Shared memory buffer full, retrieval to private memory

• This is blocked because of the bus mutex
– Period communication task is issued

• This is preempted because of lower priority
– Data gathering task takes its time

– Retrieval task time out due to watchdog timer

• System reset!

VxWorks RTOS

• Multiple tasks, each with an associated priority
– Higher priority tasks get to run before lower-priority tasks

• Information bus – shared memory area used by various tasks
– Thread must obtain mutex to write data to the info bus – a monitor

Information Bus

Mutex

Weather
Data Thread

Communication
Thread

Information Bus
Thread

Obtain mutex; write
data

Wait for mutex to read
data

VxWorks RTOS

• Multiple tasks, each with an associated priority
– Higher priority tasks get to run before lower-priority tasks

• Information bus – shared memory area used by various tasks
– Thread must obtain mutex to write data to the info bus – a monitor

Information Bus

Mutex

Weather
Data Thread

Communication
Thread

Information Bus
Thread

Free
mutex

VxWorks RTOS

• Multiple tasks, each with an associated priority
– Higher priority tasks get to run before lower-priority tasks

• Information bus – shared memory area used by various tasks
– Thread must obtain mutex to write data to the info bus – a monitor

Information Bus

Mutex

Weather
Data Thread

Communication
Thread

Information Bus
Thread

Lock mutex
and read data

Priority Inversion

Information Bus

Mutex

Weather
Data Thread

Communication
Thread

Information Bus
Thread

Low priority Med Priority High priority

Priority Inversion

Information Bus

Mutex

Weather
Data Thread

Communication
Thread

Information Bus
Thread

Low priority Med Priority High priority

Interrupt!
Schedule comm thread ... long running operation

Priority Inversion

Information Bus

Mutex

• What happens when threads have different priorities?

• Comm thread runs for a long time

• Comm thread has higher priority than weather data thread

• But ... the high priority info bus thread is stuck waiting!

• This is called priority inversion

Weather
Data Thread

Communication
Thread

Information Bus
Thread

Low priority Med Priority High priority

Pathfinder incident: Priority Inversion

Classical priority inversion problem due to shared system bus!

task 1 (high)

task 2 (med)

task 3 (low)

task 3 locks S1

task 1 attempts to
lock S1 (blocked)

task 3 unlocks S1
(task 1 unblocked)
task 1 locks S1

task 1 unlocks S1

CS1

ncsp

CS1

ncsp

CS1

CS1

Z3,1

Z1,1
• tasks 1 and 3 share a resource (S1)

• prio(task1) >prio(task2) >prio(task3)

• Task 2 can run for any amount of time…
it blocks Task 3 from finishing and
unlocking resource needed by task 1.

Priority Inversion

Unbounded Priority Inversion

Variant: Air transportation

• Priority(my_plane) < Priority(obama_s_plane)
• I arrived at the airport first and called sem_wait(&runway_mutex).
• Obama arrived at the airport after me and called

sem_wait(&runway_mutex).
• My plane stopped working.
• Obama now has to wait for the engineers to fix my plane and for my

plane to take off.

Look into deeper

• VxWorks 5.x
• 2 tasks to control the 1553 bus and the attached

instruments.
– bc_sched task (called the bus scheduler)

a task controlled the setup of transactions on the
1553 bus

– bc_dist task (for distribution) task
also referred as the “communication task”

• handles the collection of the transaction results i.e. the
data.

53

Marsrobot general communication pattern

time

t1 - bus hardware starts via hardware control on the 8 Hz boundary.
The transactions for the this cycle had been set up by the previous execution
of the bc_sched task.

t2 - 1553 traffic is complete and the bc_dist task is awakened.

t3 - bc_dist task has completed all of the data distribution

t4 - bc_sched task is awakened to setup transactions for the next cycle

t5 - bc_sched activity is complete

t1 t2 t1t3 t4 t5

125 ms (8 Hz)

Spacecraft functions
LOW priority

bc-dist
MEDIUM priority

bc-sched
HIGH priority

Mil 1553 transaction

Science functions (ASI/MET, …)
LOWEST priority

Check order!
bc-dist

bc-sched

1553 communication

• Powered 1553 devices deliver data.
• Tasks in the system that access the information

collected over the 1553 do so via a
double buffered shared memory mechanism into
which the bc_dist task places the latest data.

• The exception to this is the ASI/MET task which is
delivered its information via an interprocess
communication mechanism (IPC). The IPC mechanism
uses the VxWorks pipe() facility.

VMEbus

CPU

RS6000

R
a
d

io

C
a
m

e
ra

M
il1

5
5
3

Cruise stage
controls

thrusters,
valves,

 a sun sensor,
a star scanner

Lander
interface to

accelerometers,
a radar altimeter,

an instrument for
meteorological science
known as the ASI/MET

MEM

Packed
buffer

D
-B

u
ffe

r

D
-B

u
ffe

r

D
-B

u
ffe

r

IP
C

 P
IP

E

File
Descriptor

List

Dedicated systems' tasking model

P3

Thread

P4

started
thread

Shared
data

D Mailbox

D4 message queue

data usage

bc-dist

bc-sched
Spacecraft

function
taks 1

Spacecraft
function

tasks

Science
function
task 1

Science
function

tasks

Shared
data

ASI/MET

task

Shared
data

Shared
data

Shared
data

Mil 1553
trans
setup

pipe

Mil 1553
data
setup

File

Descriptor

Table System_mutex

IPC Mechanism

• Tasks wait on one or more IPC "queues" for messages
to arrive using the VxWorks select() mechanism to wait
for message arrival.

• Multiple queues are used when both high and lower
priority messages are required.

• Most of the IPC traffic in the system is not for the
delivery of real-time data. The exception to this is the
use of the IPC mechanism with the ASI/MET task.

• The cause of the reset on Mars was in the use and
configuration of the IPC mechanism.

VxWorks select()

• Pending on multiple file descriptiors:
this routine permits a task to pend until one of a set of file
descriptors becomes available

• Wait for multiple I/O devices (task level and driver level)
• file descriptors

pReadFds, pWriteFds

• Bits set in pReadFds will cause select() to pend until data
becomes available on
any of the corresponding file descriptors.

• Bits set in pWriteFds will cause select() to pend until
any of the corresponding file descriptors
becomes available.

Marsrobot

Shared ressource for
Communication
Using select()

Thread AThread A

Thread BThread B

Thread CThread C

Low priority thread

Lowest priority sporadic
meteo thread

ASI/MET

Middle priority long lasting
Comm thread

bc_dist
Different I/O

channels

System_mutex

The problem, again

• Priority inversion occurs when a thread of low priority
blocks the execution of threads of higher priority.

• Two flavours:
– bounded priority inversion

(common & relatively harmless)

– unbounded priority inversion
(insidious & potentially disastrous)

Bounded Priority Inversion

• Suppose a high priority thread becomes blocked
waiting for an event to happen. A low priority thread
then starts to run and in doing so obtains (i.e locks) a
mutex for a shared resource. While the mutex is locked
by the low priority thread, the event occurs waking up
the high priority thread.

• Inversion takes place when the high priority thread tries
to lock the mutex held by the low priority thread. In
effect the high priority thread must wait for the low
priority thread to finish.

• It is called bounded inversion since the inversion is
limited by the duration of the critical section.

ISR A

HIGH:
TASK A (40)

LOW
TASK C (30)

Bounded priority inversion

time

Lock
MUTEX (m)

Lock
MUTEX (m)

run

blocked

ready

UnLock
MUTEX (m)

Bounde
d

inversio
n time

Unbounded Priority Inversion

• Here the high level thread can be blocked indefinitely
by a medium priority thread.

• The medium level thread running prevents the low
priority thread from releasing the lock.

• All that is required for this to happen is that while the
low level thread has locked the mutex, the medium
level thread becomes unblocked, preempting the low
level thread.

• The medium level thread then runs indefinitely.

ISR A

HIGH:
TASK A (40)

LOW
TASK C (30)

Unbounded priority inversion

time

Lock
MUTEX (m)

Lock
MUTEX (m)

run

blocked

ready

MIDDLE:
 TASK B (35)

ISR B

Unbounded inversion time

Pathfinder Failure

• The failure was identified by the spacecraft as a failure
of the bc_dist task to complete its execution before the
bc_sched task started.

• The reaction to this by the spacecraft was to reset the
computer.

• This reset reinitializes all of the hardware and
software. It also terminates the execution of the current
ground commanded activities. No science or
engineering data is lost that has already been collected
(the data in RAM is recovered so long as power is not
lost).

• The remainder of the activities for that day were not
accomplished until the next day.

Comm thread
pre-emption

HIGH:
Bus thread
bc_sched

Marsrobot normal operation

time

Lock
SystemMUTEX (m)

run

blocked

ready

MIDDLE
Comm thread
bc_dist

Comm thread
Pre-emption

End of
cycle

OK!

LOWEST
Meteo thead

LOW
Tasks

Un-Lock
SystemMUTEX (m)

Comm thread
pre-emption

HIGH:
Bus thread
bc_sched

LOW
Tasks

Marsrobot priority inversion

time

Lock
SystemMUTEX (m)

run

blocked

ready

MIDDLE
Comm thread
bc_dist

NOK!

End of
cycle

Comm thread
Pre-emption

System

Reset

LOWEST
Meteo thead

Lock
SystemMUTEX (m)

Lock
SystemMUTEX (m)

Un-Lock
SystemMUTEX (m)

Priority Inversion

• The higher priority bc_dist task was blocked by the much lower
priority ASI/MET task that was holding a shared resource.

• The ASI/MET task had acquired this resource and then been
preempted by several of the medium priority tasks.

• When the bc_sched task was activated, to setup the
transactions for the next 1553 bus cycle, it detected that the
bc_dist task had not completed its execution.

• The resource that caused this problem was a mutex (here called
system_mutex) used within the select() mechanism to control
access to the list of file descriptors that the select() mechanism
was to wait on.

Priority Inversion

• The select() mechanism creates a system_mutex to protect the "wait list" of
file descriptors for those devices which support select().

• The VxWorks pipe mechanism is such a device and the IPC mechanism
used is based on using pipes.

• The ASI/MET task had called select(), which had called pipeIoctl(), which
had called selNodeAdd(), which was in the process of giving the
system_mutex.

• The ASI/ MET task was preempted and semGive() was not completed.

• Several medium priority tasks ran until the bc_dist task was activated.

• The bc_dist task attempted to send the newest ASI/MET data via the IPC
mechanism which called pipeWrite().

• pipeWrite() blocked, taking the system_mutex. More of the medium priority
tasks ran, still not allowing the ASI/MET task to run, until the bc_sched task
was awakened.

• At that point, the bc_sched task determined that the bc_dist task had not
completed its cycle (a hard deadline in the system) and declared the error
that initiated the reset.

Mars PathFinder Solutions

As suspected, the Pathfinder computer, struggling
with several activities at once, reset itself each time
it could not carry out low-priority tasks in the
allotted time. A reset is a safety feature similar to
hitting a reset button on a home computer.
 The low-priority task that kept tripping it up was
the transfer of temperature and wind
measurements from sensors to an electronics
board and then into the computer. The solution is to
raise the task's priority through some
reprogramming, Mr. Muirhead said.

What is the Fix?

• Problem with priority inversion:
– A high priority thread is stuck waiting for a low priority thread

to finish its work

– In this case, the (medium priority) thread was holding up the
low-priority thread

• General solution: Priority inheritance
– If waiting for a low priority thread, allow that thread to inherit

the higher priority

– High priority thread “donates” its priority to the low priority
thread

• Why can it fix the problem?
– Medium priority comm task cannot preempt weather task

– Weather task inherits high priority while it is being waited on

What was the problem fixed?

• JPL had a replica of the Pathfinder system on the ground
– Special tracing mode maintrains logs of all interesting system events

• e.g., context switches, mutex lock/unlock, interrupts

– After much testing were able to replicate the problem in the lab

• VxWorks mutex objects have an optional priority inheritance flag
– Engineers were able to upload a patch to set this flag on the info bus

mutex

– After the fix, no more system resets occurred

• Lessons:
– Automatically reset system to “known good” state if things run amuck

• Far better than hanging or crashing

– Ability to trace execution of complex multithreaded code is useful

– Think through all possible thread interactions carefully!!

Debug the problem

• On replica on earth

• Total Tracing on
– Context switches

– Uses of synchronisation objects

– Interrupts

• Took time to reproduce the error
• Trace analyses ==>priority inversion problem

Ty

Hardware

A
S

I/M
E

T

Tx

VxWorks 5.x

Physical I/O (BIOS)
TICKER
routine

TRACE

b
c
_d

ist

b
c
_sc

h
e
d

Bug Detection

• The software that flies on Mars Pathfinder has several
debug features within it that are used in the lab but are
not used on the flight spacecraft (not used because
some of them produce more information than we can
send back to Earth).

• These features remain in the software by design
because JPL strongly believes in the
"test what you fly and fly what you test"
philosophy.

Deadlock

• With priority inversion, eventually the system makes progress
– e.g., Comm thread eventually finishes and rest of system proceeds

– Pathfinder watchdog timer reset the system too quickly!

• A far more serious situation is deadlock

– Two (or more) threads waiting for each other

– None of the deadlocked threads ever make progress

Mutex 1

Thread 1

Thread 2Mutex 2

holds

holds

waits for

waits for

Deadlock Definition

• Two kinds of resources:
– Preemptible: Can take away from a thread

• e.g., the CPU

– Non-preemptible: Can't take away from a thread

• e.g., mutex, lock, virtual memory region, etc.

• Why isn't it safe to forcibly take a lock away from a thread
• Starvation

– A thread never makes progress because other threads are using a
resource it needs

• Deadlock
– A circular waiting for resources

• Thread A waits for Thread B

• Thread B waits for Thread A

• Starvation ≠ Deadlock

Conditions for Deadlock

• Limited access to a resource
– Means some threads will have to wait to access a shared resource

• No preemption
– Means resource cannot be forcibly taken away from a thread

• Multiple independent requests
– Means a thread can wait for some resources while holding others

• Circular dependency graph
– Just as in previous example

• Without all of these conditions, can't have deadlock!
– Suggests several ways to get rid of deadlock

Get rid of deadlock

• Unlimited access to a resource?
– Requires that all resources allow arbitrary number of concurrent

accesses

• Probably not too feasible!

• Always allow preemption?
– Is it safe to let multiple threads into a critical section?

• No multiple independent requests?
– This might work!

– Require that threads grab all resources they need before using any of
them!

• Not allowed to wait while holding some resources!

• No circular chains of requests?
– This might work too!

– Require threads to grab resources in some predefined order!

Resource Access Protocols

Priority Inversion

Priority Inheritance

Resource Access Protocols

• Critical sections: sections of code at which
exclusive access to some resource must be
guaranteed.

• Can be guaranteed with semaphores S.

P(S)

V(S)

P(S)

V(S)

P(S) checks semaphore to see if resource
is available
and if yes, sets S to „used“.
Uninterruptable operations!
If no, calling task has to wait.

V(S): sets S to „unused“ and starts
sleeping task (if any).

P(S) checks semaphore to see if resource
is available
and if yes, sets S to „used“.
Uninterruptable operations!
If no, calling task has to wait.

V(S): sets S to „unused“ and starts
sleeping task (if any).

Exclusive
access
to resource
guarded by
S

Task 1 Task 2

Hardware Issues

Case study: Bounded-Buffer

 Besides putting the CPU to 100% without doing anything useful
 Why is it wrong?

 Besides putting the CPU to 100% without doing anything useful
 Why is it wrong?

Possible problem: ++nElements

• The compiler may generate the following code:

• Depending on the interleaving of putItem() and
getItem() the final value can be -1, correct, or +1 (!)

LD R1, @nElements
ADD R1, R1, 1
SW @nElements, R1

Possible problem: ++nElements

• Possible solution: disable the interrupts

• Works on simple processors with non-preemptive kernels.
• But, for multi-core, disabling interrupts in one processor does

not prevent the other processor from modifying the variable!
– Non-preemptive kernels: A process executing in kernel

mode cannot be suspended. e.g. Windows XP, Traditional UNIX

– Preemptive Kernels: While executing in kernel mode a
process can be suspended. e.g. Linux 2.6 series and Solaris 10.

CLI
LD R1, @nElements
ADD R1, R1, #1
SW @nElements, R1
STI

Possible problem: ++nElements

• Even in architectures providing an atomic INC variable:

It may not work!
→ the need for atomic locks

• The compiler may optimize a tight loop putting the variable in a
register. In another process, the variable may be being written to
memory, but it’s not visible from the first process. This is
especially relevant in multiprocessor machines.

INC @nElements

…
while (nElements == 0)
 ;
…

…
++nElements;
…

Process A Process B

a “smart compiler” has put
nElements in a register

nElements is being updated
in memory (or a different
register)

Solving critical section problems

• Mutual Exclusion
– Only one process can be executing in the critical

section at a time

• Progress
– If on process is in the critical section only the

processes that are either at the entry or exit
sections can be involved in choosing the next
process to enter. The decision must be reached
in bounded time.

• Bounded Waiting
– No process will starve indefinitely while trying to

enter a critical section in detriment of other
processes which repeatedly enter it.

Solutions for critical section problems

• Software Algorithms: Peterson's Algorithm
• Hardware

– Simple “old” single processor machines: Disable Interrupts

• Even in modern single processor machines may not work
– TestAndSet and Swap instructions

TestAndSet

• Instruction that atomically, implemented in hardware, returns the
value of a target variable, setting it to TRUE.

• Solution for mutual exclusion:

Swap

• Instruction that atomically swaps the contents of two variables.

• Solution for mutual exclusion:

Hardware Support

• two previous algorithms:
– Solve the mutual exclusion problem and the progress condition

– Do not satisfy the bounded waiting condition (why??)

– Slightly more sophisticated algorithms exist that do so

• The implementations shown before are called spin-locks
– In general they should be avoided

– Nevertheless, in controlled ways, they are the basis for implementing true
mutexes and semaphores at the operating system level

– This is especially relevant on preemptive kernels running on
multiprocessors. (Somehow, the kernel must, in a controlled way, allow
to signal across processors in mutual exclusion!)

– In some high performance applications, sometimes programmers
spin-lock for a few moments before blocking on a true lock/semaphore. In
this way they are able to prevent a heavy process switch if the resource
becomes available in a very short time.

Linux 2.6+

• Linux 2.6 is a fully preemptive kernel. I.e. processes
can be suspended while executing in kernel mode.

• Basic underlying locking mechanism depends on
whether an SMP or non-SMP kernel is being used.

• Spin-locks are only used for very short durations.
– Longer durations imply passing control to a true

lock/semaphore, releasing the processor(s) involved.

single processor multi-processor

Disable kernel preemption Acquire spin-lock

Enable kernel preemption Release spin-lock

Reference

• Mars pathfinder failure, Martin TIMMERMAN
• Operating Systems, Paulo Marques, Departamento de

Eng. Informática, Universidade de Coimbra
• Synchronization Problems and Deadlock, Matt Welsh
• Mike Jones article "What really happened on Mars?"

http://research.microsoft.com/~mbj/Mars_Pathfinder/

http://research.microsoft.com/~mbj/Mars_Pathfinder/

http://0xlab.org

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

