定義
-------------------------------
dynamic programming (also known as dynamic optimization) is a method for solving a complex problem by breaking it down into a collection of simpler subproblems, solving each of those subproblems just once, and storing their solutions - ideally, using a memory-based data structure
[Reference](https://en.wikipedia.org/wiki/Dynamic_programming)
> DP全名為 Dynamic Programming (動態規劃) ,將問題切分多個子問題,簡化問題的複雜度,最後將所以子問題合併得到解答。
特性
---------------------------------
If the problem also shares an [optimal substructure](https://en.wikipedia.org/wiki/Optimal_substructure) property, [dynamic programming](https://en.wikipedia.org/wiki/Dynamic_programming) is a good way to work it out.
[Reference](https://en.wikipedia.org/wiki/Overlapping_subproblems)
> DP的題目有兩個重要的特性
> 1. Optimal Substructure (最佳子問題)
> 2. Overlapping Subproblem(子問題重疊)
> Q. Why memorization is ineffective in speed up a good divide-and-conquer algorithm such as MERGE_SORT ?
>
> sol)
> without overlapping. 如果沒有重疊的子問題,我們會發現時間複雜度並不會因為使用DP而降低,這是因為每次的子問題並沒有重複得部份!
> Example
Coin Change (錢幣交換)
-----------
**想法**
> dp[i]:i 價位是否可以湊的 (false/true)
> v[k]:第k種硬幣
>
> 如果i-v[k]價位可以湊得,那麼i必定也可以湊得
> If (dp[ i – v[k] ] == true) dp[ i ] = true;
**每種硬幣數量的差異**