版本 8342336ebed002bed1f92e1c94ff3bf281d5a8c8
ARM-Linux
協作者
- 2015 年春季
- 洪文麟, 蔣亞翰, 邱酩仁, 張家榮, 顧又榮
共筆
- 2015 年春季:
hackpad <https://embedded2015.hackpad.com/Team6--D3q9lvQUPDH>
_
硬體及測試平台
- 電腦端:
- Intel i5/i7
- Ubuntu 14.10 64 bit
- Lubuntu 14.10 64 bit
- 測試硬體:
- BeagleBone Black:
- ARM Cortex A8
- AM3358
- BeagleBone Black:
- 測試平台:
- Linux
Angstrom<https://github.com/beagleboard/kernel/tree/3.8>
_- Kernel version:3.8
- Linux
Lmbench 3.0 測試方法分析
Context Switch Latency on BeagleBone Black(Linux)
- 取得lmbench並編譯給BBB
- git clone https://github.com/el8/lmbench-next.git
- cd lmbench-next
- make ARCH=arm CROSS_COMPILE=arm-linux-gnueabi-
Context Switch Latency 測試理論
Abstract Machine Model:
.. image:: /embedded/arm_linux/Abstract_Machine_Model_1.png
- 方程式(1):
- TA,M: 在上執行的總時間
- Ci,A:
- Pi,M: 在上
.. image:: /embedded/arm_linux/Abstract_Machine_Model_2.png
- 方程式(2):(多了cahce/TLB miss)
- Fi,A (faults):為記憶體階層的第i層的miss次數
- Di,M (delay):每次miss所付出的懲罰
論文實驗方法:
- 測試參數:
- Stride: s
- Array size : one-dimensional array of N k-bytes
- Cache/TLB size: C k-bytes
- Cache Line size:b words
- Cache Associativity: a
- 基本假設:
- 只有L1 cache
- Instruction Cache與Data Cache為獨立的
- Data Cache可用Virtual Address(以後皆稱VA)定址:意思就是記憶體為“連續的區域”
- 子集合的基本單位(by sequence number): 1, s + 1, 2s + 1, …, N - s + 1.
- Cache更新的機制為write-through
- Tno-miss可能包含處理器被強制等待write buffer back up的時間
論文實驗分類與討論:
.. image:: /embedded/arm_linux/tlb_experiment_table.png
- REGIME 1:
- N <= C
- C為cache的容量
- N為array size
- 只要array被載入,就不再有cache miss出現,也就是永遠只有第一次載入時,會有cache miss
- 每次遞迴的執行時間(Tno-miss)包含讀取一個Array的子集合的基本單位(stride),計算,以及將結果存回Cache
- REGIME 2.a :
- array比cahce size大,所以一次沒有辦法全部讀進cahce
- stride比line size小,所以取一次array不一定會超過cache的大小,會有s/b次miss
- b/s個連續存取到同一個 cache line.
- 第一次載入array,總是Cache miss,REGIME 2 三種討論皆是如此,不再重述。
- 因此執行時間為Tno-miss + D*s/b ;D為delay penalty(代表從主記憶體讀取資料然後恢復執行的時間)
- REGIME 2.b :
- Array size 比 cache容量大
- stride比line size大(意思是每次都會miss)
- stride比array size小
- 每次遞迴都會有cache miss,也就是說每個Array的子集合的基本單位(stride)對應到一個不同的cache line.
- 每次遞迴的執行時間為Tno-miss + D
- REGIME 2.c :
- array size比cache大
- stride介於array size 的1/2~1倍,所以第一次沒有讀進來的array,就再也讀不到了
- 記憶體位置映射到一個單位子集合的次數一定少於associativity,也就是這個情況下(2.c),除了第一次載入Array會有miss之外,就沒有miss了
- 如果array有N elements,只有N/s < a可以被實驗到,且他們個別都可以被放入一個單一的子集合(stride),也就是說N/a <= s.
- 每次遞迴的執行時間為Tno-miss
- 結論
- TLB的行為可視為與Cache一樣
- Cache/TLB size可藉由測試,當發現Latency time大幅上升時,藉由比較array size(實際上的情況下面會談到)可以知道,因為D(cache miss penality)通常大於Tno-miss
- Regime 2.a與2.b相較於2.c方法,可以用來解釋為什麼在
維基百科 wiki :CPU cache<http://en.wikipedia.org/wiki/CPU_cache>
_ 中,有一張圖及內容談到當cache associativity(也就是a)越大時,miss rate越小。
.. image:: /embedded/arm_linux/tlb_wiki_associativity.png
- 參考資料:
Measuring cache and TLB performance and their effect on benchmark runtimes<http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=467697&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D467697>
_整理這篇論文的過程<https://embedded2015.hackpad.com/Team6-ARM-Linux-lmbench-Rlcb2b5Bw6O#:h=IV.-EXPERIMENTAL-RESULTS-FOR-C>
_
Context Switch Latency 理論與實際的結合
- BBB的AM3358:
.. image:: /embedded/arm_linux/BBB_hardware_1.png
- L1 Data Cache與Instruction Cache互相獨立,均為32KB
- L2 Cache為256KB
.. image:: /embedded/arm_linux/BBB_hardware_2.png
對應“Context Switch Latency 測試理論”
.. image:: /embedded/arm_linux/partical_theory.png
.. image:: /embedded/arm_linux/partical_theory_2.png