分享到plurk 分享到twitter 分享到facebook

版本 75400c664e4cc2605fafefa42c52cdd5db4d549a

Xenomai

協作者

  • 2015 年春季
    • 吳哲綱, 曾柏翔, 林展翔, 詹志鴻, 林建慶, 呂鴻, 楊于進
  • 2014 年春季
    • 向澐, 林家宏, 呂科進, 趙愷文, 阮志偉, 陳建霖

Real Time 的定義

一個real time的系統需要保證其工作在給定的時間限制內完成(稱為deadline)。 系統不需要以最快的速度(real fast)完成任務,但需要時常或每次皆在deadline之內完成。

在這個前提下,real time系統的任務完成時間是可確定的(deterministic)。 而根據系統的限制不同,real time可分為:

  • Soft Real Time

    系統不一定每次皆需要遵守deadline,但較多的deadline miss會導致服務品質降低。

  • Hard Real Time

    系統能每次皆能在deadline內完成任務。

Real time on Linux

  • PREEMPT_RT (in-kernel; single kernel)

    修改原本的 GNU/Linux 核心 (vanilla kernel),以減少non-preemptible section的方式,使其逐步改善 real-time 能力。

  • dual kernel (如 RTLinux, RTAI, Xenomai)

    運作一個 real-time 核心,然後將修改過的 GNU/Linux 核心程式碼視為該 real-time 核心的 idle task。

    在xenomai中,dual kernel 就是 Xenomai 的 Nucleus / Cobalt Core 和 Linux kernel。Xenomai 改變整個系統架構,讓 ipipe -> xenomai scheduler 來預先處理 real-time task,而 Linux 則拉到上層成為一個task。這樣可以避免 Linux 因為龐大的架構而影響處理 real-time 的時間。

Xenomai系統架構

Xenomai是一個linux kernel的patch 藉由在底層增加一個架構 負責硬體與接收interrupt 並將interrupt 傳給上層的OS(這邊稱為domain)

這個底層的架構是Adeos 是另一個open source的project

在api呼叫上可以看到不同層級的抽象化

ipipe_XXX -> rthal_XXX -> xnXXX

負責傳送interrupt的程式稱為ipipe 示意圖 :

可以找到ipipe_raise_irq()將interrupt推到pipeline

在ipipe上每個domain都有自己的優先度 高優先度的domain會先接收到interrupt 高優先度的domain的thread 可以preempt低優先度domain的thread

Xenomai 3

xenomai3有兩種configuration:

  • Cobalt: 採用dual kernel架構,是xenomai 2的延伸

  • Mercury: 使用單kernel形式,在linux kernel上提供xenomai api,由於本身依賴linux,一般來說會以PREEMPT_RT提供real-time services

Xenomai 3 dual kernal configuration : Cobalt

多一個 priority 比 linux 還高叫 cobalt 的 core 去處理 real-time 的事情,提供不同的 real-time API 給不同的 applications 使用。並且利用Optimistic interrupt protection 機制減少 changing the interrupt mask,一般的機制在每次進入critical section時都要interrupt mask,而Optimistic interrupt protection可以不用。而real-time 在意的 “deadline”,實際上就是探討 latency (latency 越大,系統越難在時限內完成完成高優先權任務,自然即時能力就越差),而 latency 很大的來源則是 interrupt handling。

Xenomai 3 single kernel configuration :Mercury

運用本機的 linux core 在 PREEMPT_RT之上達到 real-time 的事情,這裡不是強制的,看 applications 對反應時間和 maximum jitter 的要求,有些甚至會作到某種程度 deadline 的忽略。

Adeos / iPipe

主要負責處理irq 與 high resolution timer, ipipe的工作很簡單 就是設定timer並將interrupt往上丟

  • Adeos feature

    • event pipeline :

      利用pipeline的方式將不同domain的interrupt或system call往上丟

    • Optimistic interrupt protection :

      當同一個domain在處理interrupt時,有跟她相同domain的interrupt要進來時,會將它進pending狀態,等到所有pending interrupt完成時,才會處理下個domain的interrupt。但更高優先權domain的interrupt會preempt較低優先權domain的interrupt。

    • Optimistic v.s Original :

      Original case:

      Optimistic case:

      從前兩張圖可看出一般的機制在每次進入critical section時都要interrupt mask,而Optimistic interrupt protection可以不用,所以在interrupt management的時間差很多。而real-time 在意的 “deadline”,實際上就是探討 latency (latency 越大,系統越難在時限內完成完成高優先權任務,自然即時能力就越差),而 latency 很大的來源則是 interrupt handling。

    • System­ event propagation :

      system event(ex : page fault handle) 傳遞方式不同於interrupt,基本上是不可被stall的。

  • realtime support to threads running in the secondary domain

    • Common priority scheme :

      當xenomai task migrates to linux domain時,linux domain會繼承xenomai task的priority。

    • Predictability of program execution times :

      當xenomai threads 進入linux(secondary) domain時,不可被linux domain interrupt preempt掉,也不能被其他low priority activity at linux kernel preempt掉。通常最簡單實作方式就是加一個interrupt shield domain。

    • Fine-grained Linux kernel :

      In order to get the best from secondary domain,we need the Linux kernel to exhibit the shortest possible nonpreemptible section, so that rescheduling opportunities are taken as soon as possible after a Xenomai thread running in the secondary domain becomes ready to run.

    • Priority inversion management :

      Both the real-time nucleus and the Linux kernel should handle the case where a high priority thread is kept from running because a low priority one holds a contented resourse for a possibly unbounded amount of time.

  • 相關檔案︰

    • gic.c(舊版) -> irq-gic.c(新版) :

      Generic Interrupt Controller(GIC)為ARM架構中負責分配interrupt至cpu的裝置。此檔案實作gic功能的界面,包含init、mask、產生軟體interrupt、end of interrupt、取得資訊等。內容除了gic register操作外,也包含了spin locks。

    • it8152.c:提供ITE8152 (PCI Bridge)的支援。目前該硬體已經停止生產 。

    • timer-sp.c:ARM Dual-Timer Module (SP804)的界面。SP804提供兩個32/64bit count down counter,並提供timer interrupt。

    • vic.c -> irq-vic.c:

      提供Vectored Interrupt Controller(VIC)的界面。VIC主要存在於armv6或以前的架構中,提供priority、IRQ vector等功能,但並不支援SMP。在armv7之後的架構中,其漸漸被NVIC(Cortex-M)與GIC(Cortex-R/A)取代。

    • ipipe-tsc.c -> ipipe_tsc.c:Time Stamp Counter的界面,提供自reset起cycle數的計算。

    • ipipe/compat.c:與I-pipe legacy interface相關。

    • sched/clock.c:取得cpu_clock 解析度為nanosecond,開機後從0開始上數。在新版(3.18)ipipe中,此檔案並無修改。

GIC大約是上圖的distributor的位置

但raspberry pi只有一顆CPU所以不會有SMP與 CPU affinity設定的問題

HAL

檔案位置在 : xenomai-head/ksrc/arch/arm/hal.c (xenomai 2.6)

Hardware Abstract Layer:process 透過HAL呼叫ipipe的服務。這一層主要是包裝ipipe 與底層資訊 讓nucleus可以不用看到硬體資訊。

Nucleus / Cobalt

檔案位置在 : xenomai-head/ksrc/nucleus (xenomai 2.6) ; xenomai-head/kernel/cobalt (xenomai 3)

Xenomai的kernel, 包含schedule、timer、synch、thread、lock等等一般該有的RTOS功能,負責real-time tasks的執行。

Scheduler

優先處理realtime task ,linux也被視為其中一個thread,本身也有scheduler,但須等到沒有real-time task時(idle state),才會執行linux thread

就檔案有五個關於sched.c應該有四種不同的schedule方式

sched-idle.c :是專門處理idle狀態給linux schedule使用

sched-rt.c : 給real-time scheduler使用(FIFO+RR)

sched-sporadic.c : POSIX SCHED_SPORADIC scheduling class.

sched-tp.c : Temporal partitioning (typical of IMA systems)

sched.c : 應該是負責四個schedule方式的檔案

Skins

檔案位置在xenomai-head/ksrc/skins (xenomai 2.6)

呼叫xenomai的界面, 有native rtdm posix psos+ uitron vrtx vxworks等。

與PREEMPT_RT的差異

  • Linux kernel preemption model 組態 (realtime程度 ↑ => latency↓ but throughput↓)

    • PREEMPT_NONE

      著重fairness和throughput,process在執行system call時無法被preempt。

    • PREEMPT_VOLUNTARY(DESKTOP)

      允許一個低優先權的 process把自己 preempt掉(即便該 process正在 kernel mode 執行著一個系統呼叫)

    • PREEMPT(Low-Latency Desktop)

    • PREEMPT_RT

      著重determinism,對即時系統而言,作業系統的「可決定性」比 throughput 更為重要,使用固定優先權的 preemptive 排程策略 (POSIX SCHED_FIFO 與 SCHED_RR)。

  • PREEMPT_RT 機制

    • Preemptible critical sections
    • Preemptible interrupt handlers
    • Preemptible “interrupt disable” code sequences
    • Priority inheritance for in-kernel spinlocks and semaphores
    • Deferred operations
    • Latency-reduction measures
    • Execute all activities (including IRQ) in “schedulable/thread” context

    原本無法preempt的地方讓他可以preemt,讓spinlock 區塊在區分成可以preempt的地方跟不能preempt的地方,將IRQ handler移到thread中執行。

    Priority inheritance 是讓握有spinlock 或 semaphore的process可以暫時的提高優先權 讓他可以盡快做完critical section釋放spinlock或semaphore

    高Priority的 process才有辦法繼續執行。

  • PREEMPT_RT 與 xenomai的差異

    RT_PREEMPT是基於linux架構去改進 讓更多地方能preempt 達到real-time的能力

    Xenomai則是改變整個系統架構 新增一個scheduler與IRQ管理的機制

    讓處理real-time task流程簡化到只剩ipipe->scheduler 就能執行

    不會因linux龐大的架構影響到real-time task的處理時間

硬體規格

Raspberry pi (Model B+) & Beaglebone

  • Raspberry pi

  • Beaglebone

  • 詳細規格,腳位圖,及GPIO

    • https://hackpad.com/Raspberry-pi-beaglebone-xvENpXJvKIF#:h=GPIO

建立 Xenomai 環境

Xenomai 2.6 on raspberry pi

  • 下載 Raspbian: http://www.raspberrypi.org/downloads/
    • 將raspbian的img檔燒進sd card上
      sudo dd if=<raspbian image file> of=/dev/mmcblk0 bs=4M
    • if 為 input file, of 為 output file, bs為 block size
    • 燒錄詳細介紹: http://life-of-raspberrypi.blogspot.tw/
  • Install Cross complier
    cd <working dir>
    wget https://github.com/raspberrypi/tools/archive/master.tar.gz
    tar xzfv master.tar.gz
  • Download kernel
   git clone -b rpi-3.8.y --depth 1 git://github.com/raspberrypi/linux.git linux-rpi-3.8.y
  • Download Xenomai
   git clone git://git.xenomai.org/xenomai-head.git xenomai-head
  • Download minimal config
   wget https://www.dropbox.com/s/dcju74md5sz45at/rpi_xenomai_config
  • Apply ipipe core pre-patch
   cd linux-rpi-3.8.y
   patch -Np1 < ../xenomai-head/ksrc/arch/arm/patches/raspberry/ipipe-core-3.8.13-raspberry-pre-2.patch
  • Apply Xenomai ipipe core patch
   cd <working dir>
   ./xenomai-head/scripts/prepare-kernel.sh --arch=arm --linux=linux-rpi-3.8.y --adeos=xenomai-head/ksrc/arch/arm/patches/ipipe-core-3.8.13-arm-4.patch
  • Apply ipipe core post-patch
   cd linux-rpi-3.8.y
   patch -Np1 < ../xenomai-head/ksrc/arch/arm/patches/raspberry/ipipe-core-3.8.13-raspberry-post-2.patch
  • Create build directory
   cd <working dir>
   mkdir linux-rpi-3.8.y/build
  • Configure kernel
   cp rpi_xenomai_config linux-rpi-3.8.y/build/.config
   cd linux-rpi-3.8.y
   make mrproper
   make ARCH=arm O=build oldconfig
  • Compile Linux Kernel (此步驟耗時長,建議用make -j平行加速)

在作此步驟之前須export library

  export PATH=<working dir(full path)>/tools-master/arm-bcm2708/arm-bcm2708hardfp-linux-gnueabi/bin/:$PATH
   make ARCH=arm O=build CROSS_COMPILE=<working dir(full path)>/tools-master/arm-bcm2708/arm-bcm2708hardfp-linux-gnueabi/bin/arm-bcm2708hardfp-linux-gnueabi-
  • Install modules
  make ARCH=arm O=build INSTALL_MOD_PATH=dist modules_install
  • Install headers
    make ARCH=arm O=build INSTALL_HDR_PATH=dist headers_install
    find build/dist/include \( -name .install -o -name ..install.cmd \) -delete
  • 編譯好的kernelImage(/linux-rpi-3.8.y/build/arch/arm/boot/Image),移到SD卡的 /boot/ 路徑下並更改名稱為kernel.img

  • linux-rpi-3.8.y/build/dist中的Module,移到SD卡中的/lib/modules

  • Compile Xenomai

  cd xenomai-head
  export PATH=<working dir(full path)>/tools-master/arm-bcm2708/arm-bcm2708hardfp-linux-gnueabi/bin/:$PATH
  ./configure --host=arm-bcm2708hardfp-linux-gnueabi
  cd src
  mkdir dist
  make install DESTDIR=`pwd`/dist
  • dist中會出現usr/xenomai, 將這個資料夾移到sd卡中 /usr/

  • 用 minicom 連進 raspberry pi 中執行以下動作

  export PATH=/usr/xenomai/bin:$PATH  
  export LD_LIBRARY_PATH=/usr/xenomai/lib
  sudo modprobe xeno_posix

Xenomai 3 on raspberry pi

  • 取得 xenomai 3.0-rc、rpi-linux 3.18.y、ipipe 3.18.12 arm patch、toolchain
  git clone -b rpi-3.18.y git://github.com/raspberrypi/linux.git rpi-linux
  git clone -b v3.0-rc4 git://git.xenomai.org/xenomai-3.git xenomai-3
  wget http://download.gna.org/adeos/patches/v3.x/arm/ipipe-core-3.18.12-arm-1.patch
  git clone https://github.com/raspberrypi/tools.git --depth=1
  • checkout rpi-linux至3.18.12
  git checkout c963de6d8caec6278c0dde76831f9fdab5bace52
  git checkout -b 3.18.12
  • 由此處取得rpi post patch

post patch

  • 上 ipipe patch
  cd rpi-linux
  ../xenomai-3/scripts/prepare-kernel.sh --arch=arm --ipipe=<你的patch位置>/ipipe-core-3.18.12-arm-1.patch   --linux=.
  • ipipe post patch (註:pre patch為解決ipipe patch衝突之用,此處無衝突故不需要)
  patch -Np1 < <你的patch位置>/3.18.12-xenomai3-temp.patch
  • configure kernel(使用rpi提供的default)
  export CCPI=($working_dir)/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64/bin/arm-linux-gnueabihf-
  mkdir build
  make mrproper
  make ARCH=arm O=build CROSS_COMPILE=$CCPI bcmrpi_defconfig
  make ARCH=arm O=build CROSS_COMPILE=$CCPI menuconfig

若patch正確,會在設定表裡看到xenomai相關選項。

使用manuconfig或編輯build/.config,找到CONFIG_CPU_FREQ , CONFIG_CPU_IDLE , CONFIG_KGDB , CONFIG_CONTEXT_TRACKING_FORCE(若有的話)設為n。

  • compile kernel
  make -j 5 ARCH=arm O=build CROSS_COMPILE=$CCPI
  • 安裝kernel modules
  make ARCH=arm O=build INSTALL_MOD_PATH=dist modules_install
  • 安裝headers
  make ARCH=arm O=build INSTALL_HDR_PATH=dist headers_install
  • xenomai
  cd ../xenomai-3
  mkdir dist
  export PATH=/home/erickitten/workspace/xenomai/pi/tools/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64/bin/:$PATH
  • 設定bootstrap
  ./scripts/bootstrap --with-core=cobalt –enable-debug=partial
  • configure
  ./configure CFLAGS="-mcpu=arm1176jzf-s -mfpu=vfp -mfloat-abi=hard" LDFLAGS="-mcpu=arm1176jzf-s -mfpu=vfp -mfloat-abi=hard" --host=arm-linux-gnueabihf --with-core=cobalt
  • install
  make DESTDIR=`pwd`/dist install
  • 複製kernel

將linux-rpi/build/arch/arm/boot/Image複製到SD卡的/boot (partition),並改名成kernel.img。或使用config.txt,以kernel=指定名稱。

  • 移動module / patches (權限問題,需使用sudo)
  cd ..
  sudo cp -r rpi-linux/build/dist/lib/modules $(sdcard)/lib
  sudo cp -r xenomai-3/dist/usr/xenomai $(sdcard)/usr

Beaglebone Black 環境設置

使用舊版linux(Angstrom)來做測試,核心編譯步驟參考上面步驟 或 http://elinux.org/EBC_Installing_Kernel_Source

  • 下載Kernel Source & 編譯
  host$ git clone git://github.com/RobertCNelson/bb-kernel.git
  host$ cd bb-kernel
  host$ git tag  (This shows what versions can be checked out.)
  host$ git checkout 3.8.13-bone67 -b 3.8.13-bone67
  • 預設username/password
  host$ ./build_kernel.sh
  username:root
  • 設定cross compile

在Kernel Configuration中選擇General setup,輸入

  CROSS_COMPILE=arm-linux-gnueabi-
  • 安裝必要套件
  sudo apt-get update
  sudo apt-get install build-essential device-tree-compiler fakeroot lzma lzop u-boot-tools   libncurses5-dev:amd64 libc6:i386 libncurses5:i386 libstdc++6:i386 zlib1g:i386
  • 完成上述步驟後即可上電,按 boot select button 讓它從 sd card 開機,開機後進入登入畫面,帳號/密碼寫在上面

  • 登入後查詢版本

  sudo su
  uname -a

Xenomai 2.6 on Beaglebone

Kernel裝好後,測試可以成功從 SD 卡開機,接著更換換 Kernel

參考資料 http://elinux.org/EBC_Xenomai 與 http://emplearn.blogspot.tw/search?q=xenomai

  • 設定路徑
  mkdir bbb
  cd bbb
  export BBB=$(pwd)
  • 取得xenomai-2.6.4 (與 beaglebone-kernel 同一層目錄)
  wget http://download.gna.org/xenomai/stable/latest/xenomai-2.6.4.tar.bz2
  • 檢查版本
  cd bb-kernel/KERNEL
  uname -a
  git tags | sort | less
  • 選擇跟所編譯 Kernel 最接近版本,在此為 3.8.13
  git checkout 3.8.13-bone67 -b xenomai
  • Patch the kernel
  cd bb-kernel/KERNEL
  patch -p1 < ../../xenomai-2.6.4/ksrc/arch/arm/patches/beaglebone/ipipe-core-3.8.13-beaglebone-pre.patch
  patch -p1 < ../../xenomai-2.6.4/ksrc/arch/arm/patches/ipipe-core-3.8.13-arm-4.patch
  patch -p1 < ../../xenomai-2.6.4/ksrc/arch/arm/patches/beaglebone/ipipe-core-3.8.13-beaglebone-post.patch
  • Prepare the kernel
  cd ../../xenomai-2.6.4/scripts
  ./prepare-kernel.sh --arch=arm --linux=../../bb-kernel/KERNEL/
  • Prepare the kernel
  cd ../../bb-kernel
  • 確認已經關掉AUTO_BUILD
  vi system.sh
  • 確認最後一行為
  #AUTO_BUILD=1
  • 關掉 CPU Power Management —> CPU Frequency scaling中的 [ ] CPU Frequency scaling.

  • 將Real-time sub-system —> Drivers —> Testing drivers中的選項全部打開

 cd ../../bb-kernel/KERNEL
 make ARCH=arm menuconfig
  • 再重新編譯
  make -j8 ARCH=arm CROSS_COMPILE=arm-linux-gnueabi- LOADADDR=0x80008000 uImage dtbs modules
  • 編譯完後將 SD 卡內的 Kernel 換掉
  mkdir sd
  • 掛載 sd 卡

  • 確認掛載的目錄內一定要有這些路徑

  sudo mount /dev/mmcblk0p1 sd
  sudo cp beagle-kernel/kernel/arch/arm/boot/uImage sd/boot/uImage-3.8.13
  cd beagle-kernel/kernel
  sudo make ARCH=arm CROSS_COMPILE=arm-linux-gnueabi- INSTALL_MOD_PATH=$BBB/sd modules_install
  cd -
  mkdir sd/home/root/xeno_drivers
  cp beagle-kernel/kernel/drivers/xenomai/testing/*.ko sd/home/root/xeno_drivers/
  cp -r xenomai-2.6.3 sd/home/root
  ./configure --target=arm-linux-gnueabi
  mkdir -p dist; make DESTDIR=`pwd`/dist install
  • 將編譯後dist內的內容複製放到beaglebone上
  sudo umount sd
  • 測試,掛載driver
  cd ~/xeno_drivers
  insmod xeno_klat.ko
  /usr/xenomai/bin/cyclictest -p 90

Xenomai 3 on Beaglebone Black

  • 先下載 linux kernel:
    • 參考資料 : http://elinux.org/EBC_Installing_Kernel_Source
    git clone git://github.com/RobertCNelson/bb-kernel.git
    cd bb-kernel
    git tag  (This shows what versions can be checked out.)
    git checkout 3.18-rc7 -b 3.18-rc7
    ./build_kernel.sh
  • Prepare the kernel
  cd ../../xenomai-2.6.4/scripts
  ./prepare-kernel.sh --arch=arm --linux=../../bb-kernel/KERNEL/
  • Compile Kernel
  cd ../../bb-kernel
  • 確認狀態,關掉休眠
    • 關掉 CPU Power Management —> CPU Frequency scaling中的 [ ] CPU Frequency scaling.
    • 將Real-time sub-system —> Drivers —> Testing drivers中的選項全部打開
  make ARCH=arm menuconfig
  • 再重新編譯
  make -j 8 ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- LOADADDR=0x80008000 uImage dtbs modules
  • 把 SD card format 並 燒錄 debian (要進入 root 模式)
  sudo mkfs -t ext4 /dev/mmcblk0
  sudo xz -dkc bone-debian-7.5-2014-05-14-2gb.img.xz > /dev/mmcblk0
  • 把dtb file (or dts) and zImage 換掉,把 zImage 放入到 SD card 內 就可以成功開機了!

  • 然後去下載 Xenomai3.git

    • 參考資料 :http://git.xenomai.org/xenomai-3.git
    wget http://git.xenomai.org/xenomai-3.git/snapshot/xenomai-3-3.0-rc4.tar.bz2
    tar jxvf xenomai-3-3.0-rc4.tar.bz2
    wget http://download.gna.org/adeos/patches/v3.x/arm/ipipe-core-3.18.12-arm-1.patch //載 ipipe patch
    cd bb-kernel/KERNEL
    patch -p1 < ../../ipipe-core-3.18.12-arm-1.patch
  • Compile Xenomai 3

  cd xenomai-3-3.0-rc4
  mkdir dist
  export PATH=/home/neal/Xenomai/tool-master/arm-bcm2708/gcc-linaro-arm-linux-gnueabihf-raspbian-x64/bin/:$PATH
  ./scripts/bootstrap --with-core=cobalt –enable-debug=partial
  ./configure  CFLAGS="-march=armv7-a -mtune=cortex-a8 -mfloat-abi=hard -mfpu=neon -ffast-math" --host=arm-linux-gnueabihf --target=arm-linux-gnueabihf
  mkdir -p dist; make DESTDIR=`pwd`/dist install
  • dist中會出現usr/xenomai, 將這個資料夾移到sd卡中 /usr/

  • Install module :

  cd bb-kernel/KERNEL
  mkdir dist
  sudo make ARCH=arm INSTALL_MOD_PATH=dist modules_install
  • 把 modules 移到 SD card /lib/modules 內
  sudo cp -rp dist/lib/modules/3.18.0-rc7+/ /media/neal/rootfs/lib/modules/
  • 即可成功 run xenomai 3 的 內建執行檔.
    • ex : sudo /usr/xenomai/bin/arm-linux-gnueabihf-latency

觀察與分析

     pi@raspberrypi:~$ cat /proc/xenomai/stat
     CPU    PID        MSW                  CSW           PF         STAT            %CPU    NAME
     0      0            0                  206           0          00500080        100.0   ROOT
     0      0            0                  2688553       0          00000000        0.0     IRQ3: [timer]
  • CPU : 目前這個tread是使用哪個CPU在運行,而rpi是單核心CPU,故顯示皆為0
  • MSW : Mode SWitches, This value should only increase over time for threads that are expected to interact with Linux services.
    • 當process從primary mode轉成secondary mode或是secondary mode轉成primary mode時,將會紀錄一次的轉換。

    • cyclictest的RT task因為會執行到memset,所以會從xenomai schedule跳到linux schedule,MSW+1,而執行完memset後將在跳回xenomai schedule,故再+1

  • CSW : Number of Context SWitches (or IRQ hits for the particular CPU)
  • PF : Number of Page Faults (should stop increasing as soon as mlockall is in effect)
  • STAT : A bitfield describing the internal state of the thread. Bit values are defined in include/nucleus/thread.h (See status and mode bits). The STAT field from /proc/xenomai/sched gives a 1-letter-per-bit symbolic translation of a the most significant subset of those bits.
  • %CPU : CPU share of the thread (or IRQ handler) since the last retrieval of the statistics.
  • NAME : Name of the thread (or IRQ number and registered driver). Can be set, e.g., with the (non portable) POSIX-API-function pthread_set_name_np. See API documentation of the RTOS skin in question.
     pi@raspberrypi:~$ sudo /usr/xenomai/bin/cyclictest >/dev/null 2>/dev/null &
     [1] 2253
     pi@raspberrypi:~$ ps aux | grep -i "cy"
     root      2253  0.5  0.3   4580   1464  ?        S    03:34   0:00   sudo /usr/xenomai/bin/cyclictest
     root      2254  2.7  0.4   2340   2132  ?        SLl  03:34   0:00   /usr/xenomai/bin/cyclictest
     pi        2259  0.0  0.1   3540   820   ttyAMA0  S+   03:34   0:00   grep --color=auto -i cy
     pi@raspberrypi:~$ cat /proc/xenomai/stat
     CPU    PID        MSW                CSW              PF        STAT        %CPU    NAME
     0      0          0                  255              0         00500080    100.0   ROOT
     0      2254       1                  1                0         00b00380    0.0     cyclictest
     0      2256       2                  48               0         00300184    0.0     cyclictest
     0      0          0                  2913946          0         00000000    0.0     IRQ3: [timer]
     pi@raspberrypi:~$ watch -n 1 cat /proc/xenomai/stat
     Every 1.0s: cat /proc/xenomai/stat                      Wed Jan  8 03:38:43 2014

     CPU    PID        MSW                CSW           PF        STAT         %CPU     NAME
     0      0          0                  442           0         00500080     99.9     ROOT
     0      2254       1                  1             0         00b00380     0.0      cyclictest
     0      2256       2                  235           0         00300184     0.0      cyclictest
     0      0          0                  2953543       0         00000000     0.1      IRQ3: [timer]

在這邊可以看到cyclictest有兩個pid,因為/usr/xenomai/bin/cyclictest它會先創一個thread,並讓這個thread跑nanosleep,所以會有兩個process。接著看向CSW,pid 2254的cyclictest, 他的CSW只有1。pid 2256的卻有235,這是因為2256是一個xenomai realtime task,而 2254是一個 linux的process,所以2256會優先執行,直到realtime task都做完才會換low priority的linux domain process取得CPU,因此2254的CSW值才會是1而沒有增加。

     pi@raspberrypi:~$ sudo kill 2254

     pi@raspberrypi:~$ ps aux | grep -i "cy"
     pi        2324  0.0  0.1   3540   820 ttyAMA0  R+   03:46   0:00 grep --color=auto -i cy
     [1]+  Done                    sudo /usr/xenomai/bin/cyclictest > /dev/null 2> /dev/null

     pi@raspberrypi:~$ sudo /usr/xenomai/bin/cyclictest -p FIFO >/dev/null 2>/dev/null &
  • 在我們了解MSW時,嘗試了在-p後面加上了文字(如:FIFO、RR……)

  • 發現MSV的值開始往上增加,也發現一開始對於MSW的定義理解錯誤

      CPU    PID        MSW                CSW                PF         STAT          %CPU     NAME
      0      0          0                  75266              0          00500080      99.9     ROOT
      0      2978       1                  1                  0          00b00380      0.0      cyclictest
      0      2980       2                  26846              0          00300184      0.0      cyclictest
      0      7559       1                  1                  0          00b00380      0.0      cyclictest
      0      7561       66                 130                0          00b00184      0.0      cyclictest
      0      0          0                  11266931           0          00000000      0.1      IRQ3: [timer]
  • trace後才了解,這是xenomai在-p的指令上是使用atoi,將輸入的數字轉為int,但並沒有進行偵錯,才導致segment fault,而需跳轉到linux domain進行除錯。

效能表現

  • Stock Linux
   cyclictest -p 90 - m -c 0 -i 200 -n -h 100 -q -l 1000 >log

  • PREEMPT_RT-patched Linux
   cyclictest -p 90 - m -c 0 -i 200 -n -h 100 -q -l 1000 >log

  • Xenomai-patched Linux
   /usr/xenomai/bin/cyclictest -p 90 - m -c 0 -i 200 -n -v 100 -q -l 100" >log

  • User,kernal,timer IRQ 在R-pi上使用Xenomai 2.6與Xenomai 3.0之比較圖

    • Xenomai 3.0

    • Xenomai 2.6

  • User,kernal,timer IRQ 在Beaglebone上使用Xenomai 2.6與Xenomai 3.0之比較圖

    • Xenomai 3.0

    • Xenomai 2.6

Cyclictest 原理

  • 概念:設定一個時間間隔->取得現在時間->讓process 睡一個間隔->process醒來後再取一次時間->比對兩次取得的時間差與設定的間隔差距

  • pseudocode:

    clock_gettime((&now))
    next = now + par->interval
    while (!shutdown) {
        clock_nanosleep((&next))
        clock_gettime((&now))
        diff = calcdiff(now, next)
        # update stat-> min, max, total latency, cycles
        # update the histogram data
        next += interval
    }
  • 造成時間差的原因

    • timer精準度
    • IRQ latency
    • IRQ handler duration
    • scheduler latency
    • scheduler duration
  • Cyclictest 實作流程

    1.cyclictest建立一個timerthread, 它一個 realtime 的 thread

    2.timerthread會重複的執行取第一次時間 nanosleep(interval) 取第二次時間 比對兩次時間差與interval的差異

    3.最後將結果輸出在terminal

  • Clock_nanosleep 的 timer

    clock_nanosleep 使用的timer 是 high resolution timer(HRT) ,讓睡眠時間可以更精確,達到nanosecond的精準度(但還是要看硬體能提供的精準度)

    因為能在更準確得時間讓process醒來並取的nanoscecond單位的時間 所以可以計算到由systick無法計算到的duration + latency

  • Clock_nanosleep 實作流程

    1.使用 spinlock (xnlock_get_irqsave) 令 CPU 不接受 Interrupt

    2.使用 xnpod_suspend_thread 改變目前 thread 的狀態

    3.使用 xntimer_get_timeout_stopped 取得 tick

    4.使用 ticks2ts 轉換時間單位

       int clock_nanosleep (clockid_t clock_id, int flags, const struct timespec *rqtp, struct timespec *rmtp)
       {
          xnthread_t *cur;
          spl_t s;
          int err = 0;
    
          if (xnpod_unblockable_p())
              return EPERM;
    
          if (clock_id != CLOCK_MONOTONIC && clock_id != CLOCK_REALTIME)
              return ENOTSUP;
    
          if ((unsigned long)rqtp->tv_nsec >= ONE_BILLION)
              return EINVAL;
    
          if (flags & ~TIMER_ABSTIME)
              return EINVAL;
    
          cur = xnpod_current_thread();
    
          xnlock_get_irqsave(&nklock, s); 
    
          thread_cancellation_point(cur);
    
          xnpod_suspend_thread(cur, XNDELAY, ts2ticks_ceil(rqtp) + 1,clock_flag(flags, clock_id), NULL);
    
          thread_cancellation_point(cur);
    
          if (xnthread_test_info(cur, XNBREAK)) {
    
              if (flags == 0 && rmtp) {
                  xnsticks_t rem;
    
                  rem = xntimer_get_timeout_stopped(&cur->rtimer);
                  xnlock_put_irqrestore(&nklock, s); 
    
                  ticks2ts(rmtp, rem > 1 ? rem : 0); 
              } else
                  xnlock_put_irqrestore(&nklock, s); 
    
              return EINTR;
          } 
    
          xnlock_put_irqrestore(&nklock, s);
    
          return err; 
       }
  • Cyclictest

  • Test case: POSIX interval timer, Interval 500 micro seconds,. 100000 loops, 100% load.

    • Commandline:
      cyclictest -t1 -p 80 -i 500 -l 100000
  • 使用 PREEMPT LINUX

    root@raspberrypi:/home/pi# sudo ./cyclictest -t1 -p 80 -i 500 -l 100000
    # /dev/cpu_dma_latency set to 0us
    policy: fifo: loadavg: 0.00 0.01 0.05 1/61 2064          
    T: 0 ( 2063) P:80 I:500 C: 100000 Min:     27 Act:   49 Avg:   42 Max:    1060
  • 使用 RT-PREEMPT
    Linux raspberrypi 3.6.11+ #474 PREEMPT Thu Jun 13 17:14:42 BST 2013 armv6l GNU/Linux
    Min:     22 Act:   31 Avg:   32 Max:     169
  • 使用 Xenomai
    Linux raspberrypi 3.8.13-core+ #1 Thu Feb 27 03:02:16 CST 2014 armv6l GNU/Linux
    Min:      1 Act:    5 Avg:    6 Max:      41
    root@raspberrypi:/home/pi# /usr/xenomai/bin/cyclictest -t1 -p 80 -i 500 -l 10000 
    0.08 0.06 0.05 1/61 2060          
    T: 0 ( 2060) P:80 I:     500 C:  100000 Min:      -4 Act:      -2 Avg:       0 Max:      30

T:thread

P:priority

I:interval

C:執行cycle數

Min:最小延遲

Act:此次延遲時間

Avg:平均延遲

Max:最大延遲

最重要的是Max值 為了確保realtime 要能知道worst case,讓開發者可以評估最差的情況可以在多少時間內可以做出回應

  • 比較Cyclictest 於使用 PREEMPT LINUX,RT-PREEMPT以及Xenomai

    • 使用R-pi model B+ , Xenoami 2.6.4

    • 實驗數據 | Kernel Type | Max latency(µs) | |:—————-|:—————-| | Linux preempt | 271 | | Full preempt_rt | 96 | | Xenomai 2.6.4 | 38 |

示波器 實驗

試著撰寫driver驅動板子,進而使用示波器測試latency,驗證在不同因素之下造成不同的 max latency

  • Source code

    https://github.com/jacky6016/GPIO-test

    https://github.com/erickitten/GPIO_test_xenomai3_2

  • 實驗數據

Driver model max latency(µs)
rpi xenomai-2 RTDM 4.71
beaglebone xenomai-2 RTDM 7.46
rpi xenomai-3 RTDM 7.022
rpi xenomai-2 linux native 10.92
rpi xenomai-2 user-level(python) 244

展示

在 RPi B+ 上結合 Xenomai 3 的成果:CNC 繪圖機

Q&A

  • Q1:handler duration 與 schedule latency 之間的延遲原因為何?

    • A:

  • Q2:ipipe的效益為何?為什麼要切割damain?切割完要如何確保real-time的穩定速度?

    • A:

    ipipe的主要效益是用來切割domain,讓real-time和linux interrupt可以在不同domain下進行運作。

    切割domain原因是因為real-time domain的優先序是最高的,當有real-time interrupt進來,就會直接進入real-time domain去執 行,不會在經過整個linux的複雜架構下進行preempt的動作,可確保real-time 能在短時間內進行處理。

  • Q3:ipipe/Adeos理論基礎中的Fine-grained是什麼?

    • A:

    life with andeos這篇指的fine-grained linux kernel,是指在編寫linux kernel code時,盡量讓critical section能愈短愈好,確保當real-time thread running in the secondary domain能在一定時間內遇到schedule point,也就可以在schedule point處理real-time thread。

  • Q4:ipipe的相關檔案,gic.c、it8152.c … 之類的有什麼關係?

    • A:
  • Q5:請解釋下圖

    • A:

      GIC:Generic Interrupt Controller(GIC)是arm用來集中分配interrupt至cpu的裝置。它主要分為distributor與cpu interfaces.

      distributor:負責分配interrupts,紀錄執行狀態,並提供registers以決定每個interrupt的enable、priority level、target processor。每個interrupt會有固定的interrupt ID,以供接收的cpu辨認。

      cpu interface:向cpu傳送interrupt request,並提供distributor接收(acknowledge)interrupt、完成interrupt等訊息;它也提供決定priority mask、preemption policy的registers。

      當啟動時,cpu interface會收到priority最高的pending interrupt,並決定它是否有足夠的priority被此cpu執行(參考mask、running interrupt、preemption),若是則signal cpu。cpu讀取interface的register(GICC_HPPIR)以接收interrupt,此讀取會得到interrupt ID,當接收後 distributor會改變狀態(由pending->active(and pending));完成之後,cpu寫入register以示意interrupt已經完成。

      Interrupt types:

      • Private Peripheral Interrupt (PPI) ID:16-31

        每個cpu各自獨立的硬體interrupt。

      • Shared Peripheral Interrupt (SPI) ID:32~1019

        外部硬體interrupt。

      • Software-generated interrupt (SGI) ID:0~15

        軟體interrupt,由一個cpu發出,可指定至一個或多個cpu,cpu以寫入GICD_SGIR的方式產生SGI,其中PPI與SGI是N-N model,每個cpu的interrupt狀態各自獨立;SPI是1-N model,一旦其中一個目標cpu接受,interrupt即視為已處理。

  • Q6:Xenimai2與Xenomai3架構圖

    • A:
  • Q7:要如何知道每個CPU上跑哪一個task? SMP是如何排程?

    • A:

      對CPU來講 thread, process都是程式(program),一如作業系統,CPU只是在其間跳來跳去;有一個 load balancer 會定期得去處理 Processor 間的 Balance 會將 loading 較重的 Processor 內的工作移到 Loading 較輕的 Processor 上去執行,其中會用到 Processor 間的 interrupt 這種 interrupt 叫 IPI (inter-processor interrupt)

      • inter-processor interrupt (IPI):

      IPI is a special type of interrupt by which one processor may interrupt another processor in a multiprocessor system if the interrupting processor requires action from the other processor.

      • PPI :

      An interrupt generated by a peripheral.

Hackpad

  • 討論&紀錄 https://embedded2014.hackpad.com/Xenomai-raspberry-note-XwJtuQn9nkD

  • 整理 https://embedded2014.hackpad.com/Xenomai-z2CJPjPLTer

  • 2015 hackpad:https://embedded2015.hackpad.com/Xenomai-LydARMEzEWP#:h=Cobalt

參考資料