分享到plurk 分享到twitter 分享到facebook

版本 07d35ea971496b1d6f5e303194cb0ab5ab671972

Pulse-Width Modulation (PWM)

Introduction

  • Pulse-Width Modulation, 又稱pulse-duration modulation(PDM),其利用在頻率不變的狀態下, 改變工作週期大小, 使整體平均電壓值上升或下降, 藉此間歇性電壓及功率切換以節省能源及控制等效果.

.. image:: /PWM_intr.PNG - 因PWM需要透過Timer來實現, 後面會稍作簡介

Clock control

  • 在學習Timer前, 先瞭解系統clock是如何產生的, 以及給Timer的clock值.

  • A part of clock tree (STM32F407xx Reference mamual - p. 576)

.. image:: /Timer_clock.png

  • HSE clock (High speed external clock signal)

我們使用Crystal resonator作為外部震盪, 其頻率為8Hz(由STM32f4 discovery user manual 可知)

  • APBx timer clocks 計算

    • 參閱system_stm32f4xx.c

      • line 341 RCC->CR |= ((uint32_t)RCC_CR_HSEON);

        • enable HSE(High Speed External clock)
      • line 374 ~ 379 配置與啟動PLL

      • line 146 ~ 151, 可知

        • PLL_VCO = (HSE_VALUE or HSI_VALUE / PLL_M) * PLL_N
        • SYSCLK = PLL_VCO / PLL_P
        • 並定義 PLL_M = 8, PLL_N = 336, PLL_P = 2 而外部晶體頻率為8MHz
        • -> PLL_VCO = (8MHz / 8) * 336 = 336MHz
        • -> SYSCLK = 336MHz / 2 = 168MHz
      • line 365 RCC->CFGR |= RCC_CFGR_HPRE_DIV1;

        • 此行設定HCLK = SYSCLK / 1 = 168MHz
      • line 372 RCC->CFGR |= RCC_CFGR_PPRE1_DIV4;

        • 此行設定APB1 peripheral clocks為 HCLK / 4 = 42MHz
      • 而由上圖可知

        • APB1 timer clocks = APB1 peripheral clocks * 2 = 84MHz

        • 該clock亦為後面Timer章節提及的 CK_INT 之值

Timers

Basic timers 基本定時器(TIM6 和 TIM7)

  • 具有 16-bit auto-reload upcounter driven by a programmable prescaler

  • 用途: Synchronization circuit to trigger the DAC(內部連接至DAC)

Advanced-control timers 高級控制定時器(TIM1 和 TIM8)

  • 具有 16-bit up, down, up/down auto-reload counter driven by a programmable prescaler which allowing dividing the counter clock frequency either by any factor between 1 and 65536(2^16).

  • 用途: 最多有四個獨立通道可用於input capture, output compare, PWM generation(Edge and Center-aligned Mode) and one-pulse mode output.

  • 與TIM2&TIM5之差異: 可以 Break input to put the timer’s output signals in reset state or in a known state

General-purpose timers 通用定時器(TIM9 to TIM14)

  • 具有16-bit auto-reload up counter.

  • 以及16-bit programmable prescaler used to divide the counter clock frequency by any factor between 1 and 65536.

  • 用途: 最多有兩個獨立通道可用於 input capture, output compare, PWM generation(Edge and Center-aligned Mode) and one-pulse mode output.

General-purpose timers 通用定時器(TIM2 to TIM5) (STM32F407xx Reference mamual - p. 576)

  • 具有16-bit (TIM3 & TIM4) or 32-bit (TIM2 & TIM5) up, down, up/dowm auto-reload counter.

  • 以及16-bit programmable prescaler used to divide the counter clock frequency by any factor between 1 and 65536.

  • 用途: 最多有四個獨立通道可用於 input capture, output compare, PWM generation(Edge and Center-aligned Mode) and one-pulse mode output.

  • Block diagram

.. image:: /BD of GP timer.png

  • clock來源 : 內部clock(CK_INT)、外部clock模式1(TIx)、外部clock模式2(ETR)、內部觸發輸入(ITRx)。

  • Counter modes (STM32F407xx Reference mamual - p. 579)

Counting Mode

up counting mode

.. code-block:: prettyprint linenums

TIM_TimeBaseInitStruct.TIM_CounterMode = TIM_CounterMode_Up;

.. image:: /Timer_upcounting.png

down counting mode

.. code-block:: prettyprint linenums

TIM_TimeBaseInitStruct.TIM_CounterMode = TIM_CounterMode_Down;

.. image:: /countdown.png

center aligned mode

.. code-block:: prettyprint linenums

TIM_TimeBaseInitStruct.TIM_CounterMode = TIM_CounterMode_CenterAligned1;

.. image:: /center_aligned.png

Timer Mode

Input capture mode

PWM input mode

Forced output mode

Output compare mode

PWM mode

  • PWM configuration

    • TIM_ClockDivision - 採樣頻率基準,當連續採樣到N個有效電平時,才當作一次有效電平。

    • TIM_Prescaler - 將TIMxCLK除以(TIM_Prescaler+1)

    • TIM_CounterMode - 選擇計數模式

    • TIM_Period - TIMx_ARR,counter 週期

    • TIM_OCMode - PWM模式

      • PWM 1 Mode : 在向上計數,TIMx_CNT<TIMx_CCRx時,輸出為1,否則輸出為0;在向下計數,TIMx_CNT>TIMx_CCRx時,輸出為0,否則輸出為1。

      • PWM 2 Mode : 在向上計數,TIMx_CNT<TIMx_CCRx時,輸出為0,否則輸出為1;在向下計數,TIMx_CNT>TIMx_CCRx時,輸出為1,否則輸出為0。

    • TIM_Pulse - TIMx_CCRx,脈衝寬度

    • TIM_OCPolarity - 設置輸出極性,例如:TIM_OCPolarity_High PWM輸出關閉時默認為低電位。

    • 輸出脈波週期 = (TIM_Period+1) * (TIM_Prescaler+1) * (TIM_ClockDivision+1) / TIMxCLK

    • 以LED為例:

.. image:: /timer.png

  • TIM_Prescaler = 500-1, TIM_Period = 1680-1 , TIMxCLK=84MHz

  • 輸出脈波週期 = (TIM_Period+1) * (TIM_Prescaler+1) / TIMxCLK

    •     = (1680-1+1) * (500-1+1) /84000000 = 0.01 s(100Hz)
  • 0.01 s 遠小於人眼視覺暫留的時間(0.1~0.4s),因此上圖的PWM 1 duty cycle(75%)>PWM 2 duty cycle(25%),PWM 1 Mode看起來會比PWM 2 Mode亮。

Code_section

RCC_Configuration

.. code-block:: prettyprint linenums

RCC_AHB1PeriphClockCmd( RCC_AHB1Periph_GPIOD , ENABLE );//Enalbe AHB for GPIOD
RCC_APB1PeriphClockCmd( RCC_APB1Periph_TIM4, ENABLE );//Enable APB for TIM4

GPIO_Configuration

.. code-block:: prettyprint linenums

GPIO_InitTypeDef GPIO_InitStructure;//Create GPIO_InitStructure 
GPIO_StructInit(&GPIO_InitStructure); // Reset GPIO_structure

GPIO_PinAFConfig(GPIOD, GPIO_PinSource12, GPIO_AF_TIM4); // set GPIOD_Pin12 to AF_TIM4
GPIO_PinAFConfig(GPIOD, GPIO_PinSource13, GPIO_AF_TIM4); // set GPIOD_Pin13 to AF_TIM4
GPIO_PinAFConfig(GPIOD, GPIO_PinSource14, GPIO_AF_TIM4); // set GPIOD_Pin14 to AF_TIM4
GPIO_PinAFConfig(GPIOD, GPIO_PinSource15, GPIO_AF_TIM4); // set GPIOD_Pin15 to AF_TIM4
  

// Setup Blue & Green LED on STM32-Discovery Board to use PWM.
GPIO_InitStructure.GPIO_Pin =  GPIO_Pin_12 | GPIO_Pin_13| GPIO_Pin_14| GPIO_Pin_15; //PD12->LED3 PD13->LED4 PD14->LED5 PD15->LED6
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;            // Alt Function - Push Pull
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
GPIO_Init( GPIOD, &GPIO_InitStructure );  

TIM_Configuration

.. code-block:: prettyprint linenums

TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStruct;//Create TIM Time Base Init structure 
TIM_OCInitTypeDef TIM_OCInitStruct;//Create TIM Output Compare Init structure

// Let PWM frequency equal 100Hz. ( 84MHz / 1680 /500 = 100Hz )
// Let period equal 1600. Therefore, timer runs from zero to 1600. 
TIM_TimeBaseStructInit( &TIM_TimeBaseInitStruct );//reset TIM_TimeBaseStructInit
TIM_TimeBaseInitStruct.TIM_Period = 1680 - 1;   
TIM_TimeBaseInitStruct.TIM_Prescaler = 500 - 1; 
TIM_TimeBaseInitStruct.TIM_CounterMode = TIM_CounterMode_Up;    
TIM_TimeBaseInit( TIM4, &TIM_TimeBaseInitStruct );

TIM_OCStructInit( &TIM_OCInitStruct );reset TIM_OCStructInit
TIM_OCInitStruct.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStruct.TIM_OCMode = TIM_OCMode_PWM1;


// TIM4_CCR register (16 bits). Value can range from zero to 65535.
// TIM_Pulse = Compare Capture register(CCR) = 1680 ( duty_cycle = 100%)
TIM_OCInitStruct.TIM_Pulse = 1680; //(0=Always Off, >1680 =Always On)

TIM_OC1Init( TIM4, &TIM_OCInitStruct ); // set TIM_OCInitStruce to TIM4_channel1
TIM_OC2Init( TIM4, &TIM_OCInitStruct ); // set TIM_OCInitStruce to TIM4_channel2
TIM_OC3Init( TIM4, &TIM_OCInitStruct ); // set TIM_OCInitStruce to TIM4_channel3
TIM_OC4Init( TIM4, &TIM_OCInitStruct ); // set TIM_OCInitStruce to TIM4_channel4

TIM_Cmd( TIM4, ENABLE ); //Enables  TIM4 peripheral

PWM control

.. code-block:: prettyprint linenums

while(1) // Do not exit { if(brightness + n <= 0) who_run = (who_run + 1) % 4;

if (((brightness + n) >= 3000) || ((brightness + n) <= 0))
  n = -n; // if  brightness maximum/maximum change direction   
brightness += n;

//Light LEDs in turn
 switch(who_run){
     case 0:
         TIM4->CCR1 = brightness - 1; // set brightness
         break;
     case 1:
         TIM4->CCR2 = brightness - 1; // set brightness
         break;
     case 2:
         TIM4->CCR3 = brightness - 1; // set brightness
         break;
     case 3:
         TIM4->CCR4 = brightness - 1; // set brightness
         break;
 }
for(i=0;i<10000;i++);  // delay

}

return(0); // System will implode }


Demo video

  • http://youtu.be/RHzLguvuOKY

  • http://youtu.be/guG6MdLIwfI (LED 3 4 5 6依序 亮-暗 轉換)

  • http://youtu.be/ygELIXJFHM8

  • http://youtu.be/jJfebbbMDPw (透過外接 BUTTON 調整 LED亮度)

  • http://youtu.be/bFRWfXI_k5Q (透過PWM使MOTOR達到快慢快慢變化)

補充

  1. PWM較省電?

    因為一般類比電壓要降低電壓輸出需靠增加電阻,源頭輸出電壓“持續”都為同一電壓,不過利用電阻改變最後輸出電壓,而PWM他靠的是一段時間內輸出的頻率來模擬類比電壓,“不需要持續的輸出”,故不會降電浪費在電阻上,即可達到省電效果。

    例如:使用9V電池來給一燈泡供電,連接電池跟燈泡時間為50ms,斷開電池和燈泡時間為50ms。1秒鐘(1000ms)過後,會重複此過程10次,燈泡將會連接到一個4.5V電池(9V電池的50%)上一樣。

  2. overflow 和 UEV UIF的關係

    UEV occurs everytime an overflow occurs, and UIF is a flag triggered when overflow occurs, if you don’t clean the flag, it will remain triggered.

  3. 向上計數和向下計數的差別

    以四位元向上計數器為例,由四個JK正反器串接而成,輸出DCBA由0000依據二進位的變化至1111。下一個脈波來時,又回到0000。依此類推故此計數器可由0計數到15。而向下計數器與向上計數器不同點是下一級的CLK接於前一級的Q,輸出DCBA由1111向下計數到0000,待下一個時脈輸入時又變為1111,再依序變化。

  4. timer 和 RTC的差別

    The system timer is what makes everything in the computer run at the same speed.

    For example, your CPU won’t look for a fresh batch of data while the Memory is still trying to feed it the last batch.The Real Time Clock tells the system what day/time it is.

  5. TIM_OCMode (timer output compare mode)

.. image:: /TIM_OCMode.png

  1. PWM先高後低和先低後高 在步進馬達上表現有什麼差別?

    在馬達剛要啟動時,因為先高後低是在duty cycle的前半段先供電,而先低後高則是到duty cycle的後半段才供電,在馬達的表現上 先高後低的啟動速度會比先低後高還要快一點

  2. 改成中央對齊計數方式會怎麼樣?

.. image:: /中央對齊.png Reference =============

  • http://blog.csdn.net/scarlettsp/article/details/6656588

  • http://zh.wikipedia.org/zh-tw/%E8%84%88%E8%A1%9D%E5%AF%AC%E5%BA%A6%E8%AA%BF%E8%AE%8A

  • http://ppt.cc/nIAF

  • http://www.google.com.tw/url?sa=t&rct=j&q=pwm&source=web&cd=10&cad=rja&ved=0CFMQFjAJ&url=http%3A%2F%2Fwww.vr.ncue.edu.tw%2Fesa%2Fa1001%2FPWM.pdf&ei=S3OoUO6pOafcmAWWiIGQDw&usg=AFQjCNE_7pw6paGQzH7kSwkwD2witqcC-A

  • http://hi.baidu.com/snic_k/item/0f045e3288e6683d2e20c42b

  • 陳志旺(2012),STM32 嵌入式微控制器快速上手,中國:電子工業出版社。

  • http://blog.sina.com.cn/s/blog_76c545390100ovfj.html

    P.155 8.3.3 計數器模式

範例程式

  • https://github.com/PJayChen/STM32f4_discovery_TIM_PWM_Output

    依序點亮LED

  • https://gitcafe.com/embedded2012/P-coolod/blob/master/Lab-6/discoveryF4/TIM_PWM_Output/main.c

    此程式為依序更改 LED 3 4 5 6(利用PD12 13 14 15 作PWM應用)亮度 由暗漸漸轉亮 再由亮漸漸轉暗

  • https://gitcafe.com/embedded2012/P-coolod/blob/master/Lab-6/discoveryF4/GPIO_test/main.c

    此程式碼利用PB4 5作Output pin持續輸出高態電壓,PA2 3作Input Pin接收來在output pin的電壓輸入,並設定負緣觸發中斷,中斷觸發以改變duty cycle佔空比,電壓高低態變化則利用外接button,當按下button則電壓 高->低 ,PA2 3接收到變化便會觸發中斷,透過改變Timer來做duty cycle佔空比的改變,以達到LED亮暗改變.(以下圖說明)

.. image:: /embedded/PWM-GPIO_test_Explain_figure.png